Die Vermessung der Chemie: Lokaler Fingerabdruck von Wasserstoffbrücken-Bindungen experimentell erfasst

Das Team konnte erstmals mit der Methode der inelastischen R&ouml;ntgenstreuung beobachten, wie der Aufbau von Wasserstoffbr&uuml;cken die C=O Bindung im Azeton-Molek&uuml;l ver&auml;ndert.</p> <p>

Das Team konnte erstmals mit der Methode der inelastischen Röntgenstreuung beobachten, wie der Aufbau von Wasserstoffbrücken die C=O Bindung im Azeton-Molekül verändert.

© arö/HZB

Ein Team aus dem Helmholtz-Zentrum Berlin konnte nun erstmals messen, wie neue Verbindungen zwischen Molekülen diese beeinflussen: Sie haben aus Messdaten an der Swiss Lightsource des Paul-Scherrer-Instituts die „Energielandschaft“ von Azeton-Molekülen rekonstruiert und so experimentell den Aufbau von Wasserstoffbrücken zwischen Azeton- und Chloroform-Molekülen nachgewiesen. Die Ergebnisse sind in Nature Scientific Reports veröffentlicht  und helfen, grundlegende Phänomene der Chemie zu verstehen.

Moleküle setzen sich aus Atomen zusammen, die zueinander bestimmte Abstände und Winkel einnehmen. Die Gestalt eines Moleküls kann sich verändern, zum Beispiel durch die Nachbarschaft zu anderen Molekülen, durch äußere Kräfte und Anregungen oder auch wenn ein Molekül eine chemische Verbindung mit einem anderen Molekül eingeht. Ein nützliches Konzept, um die möglichen Änderungen in Molekülen zu beschreiben, sind sogenannte Potenzialflächen oder Energielandschaften: Dies sind jedoch keine Flächen im realen Raum! Vielmehr betrachtet man Parameter, die das Molekül definieren, und stellt diese als Fläche dar, beispielsweise die Ausdehnung einer Kohlenstoff-Sauerstoff-Verbindung oder die Winkel zwischen verschiedenen Molekülgruppen. Solche Flächen kann man sich als hügelige Landschaften vorstellen: Wenn Licht einen Teil des Moleküls zu Schwingungen anregt, wandert der Zustand des Moleküls energetisch aufwärts, vielleicht sogar über einen Pass oder Gipfel hinweg. Schließlich kommt das Molekül wieder in das vorherige Energieminimum zurück oder landet in einer anderen Energiemulde, die veränderten Winkeln oder Verbindungslängen entspricht. Manche dieser Veränderungen lassen auf Wasserstoffbrückenbindungen mit benachbarten Molekülen schließen.

Gezielt C=O-Bindung zu Schwingung angeregt und Antwort gemessen

Das Team um Annette Pietzsch und Alexander Föhlisch hat es nun erstmals geschafft, diese sehr subtilen Potenzialflächen rund um das kleine Molekül Azeton (C3H6O) genau auszumessen. Sie nutzten dafür die Methode der inelastischen Röntgenstreuung (RIXS) an der Swiss Light Source des Paul Scherrer-Instituts (PSI) in der Schweiz. „Wir haben gezielt die Doppelbindung zwischen dem Kohlenstoff- und Sauerstoff-Atom in Azeton zu Schwingungen angeregt und die Antworten darauf genau analysiert“, erklärt Annette Pietzsch. Durch die extrem hohe Auflösung der Messdaten gelang es ihnen, die Potenzialfläche entlang dieser C=O-Doppelbindung zu kartieren.

Wasserstoffbrücken hinterlassen Fingerabdruck

Im zweiten Teil des Experiments untersuchten sie eine Mischung aus Azeton und Chloroform; diese flüssige Mischung wird als azeotrop bezeichnet, das heißt, durch Destillation lassen sich die beiden Zutaten nicht mehr voneinander trennen. Nun konnten die Wissenschaftler erstmals experimentell beobachten, wie sich die Azeton-Moleküle über Wasserstoffbrücken dicht mit den Chloroform-Molekülen vernetzen: Aus den Messdaten konnten sie auf den Fingerabdruck von Wasserstoffbrückenbindungen schließen, die sich zwischen der C=O-Gruppe der Azeton-Moleküle und den Wasserstoff-Gruppen der Chloroform-Moleküle bilden.

Nützliches Werkzeug entwickelt

„Die Ergebnisse ermöglichen erstmals die quantitative Vermessung von multidimensionalen Potenzialflächen von Molekülen. Solche komplexen Potenzialflächen sind per se ein spannendes Untersuchungsobjekt, denn sie beschreiben auch, wie sich zum Beispiel biologisch aktive Moleküle in ihrer Umgebung verhalten. Wir haben nun ein Werkzeug entwickelt, um solche Potenzialflächen experimentell zu kartieren“, schreibt das Team in seinem Beitrag, der im renommierten Nature Scientific Reports erschienen ist.

Annette Pietzsch arbeitet an der Berliner Synchrotronquelle BESSY II am Aufbau von METRIXS, einem Instrument für die Resonante Inelastische Röntgenstreuung, das in Zukunft noch deutlich bessere Auflösungen erreichen kann. Weiterhin wird das Experiment meV-RIXS hochaufgelöste Röntgenstreuung im Niederenergiebereich möglich machen. Alexander Föhlisch leitet das HZB-Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung und ist Sprecher des Helmholtz Virtual Institute 419 (Dynamic pathways in multidimensional landscapes).

Nature Scientific Reports | 6:20054 | DOI: 10.1038/srep20054
Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering, Simon Schreck, Annette Pietzsch, Brian Kennedy, Conny Såthe, Piter S. Miedema, Simone Techert, Vladimir N. Strocov, Thorsten Schmitt, Franz Hennies, Jan-Erik Rubensson & Alexander Föhlisch.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.