Solare Brennstoffe: Raffinierte Schutzschicht für das „Künstliche Blatt”

Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen.

Die Skizze zeigt den Aufbau der Probe: die n-dotierte Siliziumschicht (schwarz), eine dünne Siliziumoxidschicht (grau), eine Zwischenschicht (gelb) und schließlich die Schutzschicht (braun), auf der die Katalysatorpartikel mit dem Elektrolyten (grün) in Kontakt kommen. © M. Lublow

Ein Team am HZB-Institut für Solare Brennstoffe hat ein Verfahren entwickelt, um empfindliche Halbleiter für die solare Wasserspaltung („Künstliches Blatt“) mit einer organischen transparenten Schutzschicht zu versehen. Die extrem dünne Schutzschicht aus vernetzten Kohlenstoffatomen ist stabil und leitfähig und mit Katalysator-Nanopartikeln aus Metalloxiden bedeckt. Diese beschleunigen die Spaltung von Wasser unter Lichteinstrahlung. Die so hergestellte Hybridstruktur zeigt als Photoanode für die Sauerstoffentwicklung Stromdichten von über als 15 mA/cm2. Die Ergebnisse sind nun in Advanced Energy Materials veröffentlicht.

Das Team arbeitete mit Proben aus Silizium, einem n-dotierten Halbleitermaterial, das als einfache Solarzelle bei Beleuchtung eine Spannung liefert. Die Materialwissenschaftlerin Anahita Azarpira, Doktorandin in der Gruppe von Dr. Thomas Schedel-Niedrig, präparierte diese Proben so, dass sich zunächst Ketten von Kohlenstoff-Wasserstoff-Verbindungen auf der Siliziumoberfläche bildeten. „In einem weiteren Schritt habe ich dann Nanopartikel aus dem Katalysator Rutheniumdioxid abgeschieden“, erklärt Azarpira. Als Ergebnis bildete sich eine leitfähige und stabile Polymerstruktur von nur drei bis vier Nanometern Dicke. Dabei waren die Reaktionen in der elektrochemischen Präparationszelle überaus kompliziert und konnten erst jetzt am HZB aufgeschlüsselt werden.

Mit diesem neuen Verfahren werden die Rutheniumdioxid-Partikel zum ersten Mal doppelt genutzt: Zuerst sorgen sie dafür, dass eine effektive organische Schutzschicht entsteht. Damit werden die üblicherweise sehr komplizierten Verfahren zur Herstellung von Schutzschichten wesentlich vereinfacht. Erst dann erledigen sie ihren „normalen Job“ und beschleunigen die Aufspaltung von Wasser in Sauerstoff und Wasserstoff.

Organische Schutzschicht kombiniert ausgezeichnete Stabilität und hohe Stromdichte

Die so geschützte Silizium-Elektrode erreicht Stromdichten von über 15 mA/cm2. Dies belegt, dass die Schutzschicht eine hohe Leitfähigkeit aufweist, was keineswegs selbstverständlich für eine organische Schicht ist. Während der gesamten Messdauer von 24 Stunden beobachteten die Forscher außerdem keine Degradation der Zelle, die Ausbeute blieb stabil. Bemerkenswert ist, dass bisher ein ganz anderes Material als organische Schutzschicht favorisiert wurde: Graphen. Dieses vieldiskutierte zweidimensionale Material konnte jedoch bisher nur eingeschränkt für elektrochemische Prozesse eingesetzt werden, während die am HZB entwickelte Schutzschicht sehr gut funktioniert. „Weil sich das neuartige Material sowie das Abscheidungsverfahren auch für andere Anwendungen eignen könnten, streben wir nun internationale Schutzrechte an“, sagt Teamleiter Thomas Schedel-Niedrig.


“Sustained Water Oxidation by Direct Electrosynthesis of Ultrathin Organic Protection Films on Silicon”, Anahita Azarpira, Thomas Schedel-Niedrig, H.-J. Lewerenz, Michael Lublow* in Advanced Energy Materials DOI: 10.1002/ aenm.201502314

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Science Highlight
    05.12.2024
    Weniger ist mehr: Warum ein sparsamer Iridium-Katalysator so gut funktioniert
    Für die Produktion von Wasserstoff mit Elektrolyse werden Iridiumbasierte Katalysatoren benötigt. Nun zeigt ein Team am HZB und an der Lichtquelle ALBA, dass die neu entwickelten P2X-Katalysatoren, die mit nur einem Viertel des Iridiums auskommen, ebenso effizient und langzeitstabil sind wie die besten kommerziellen Katalysatoren. Messungen am EMIL-Labor an BESSY II haben nun ans Licht gebracht, wie die besondere chemische Umgebung im P2X-Kat während der Elektrolyse die Wasserspaltung befördert.