Priority programme for topological insulators begins second funding period

Applicants for support funds to conduct research on topological insulators met at HZB Adlershof on February 15th and 16th. This meeting dealt with the second period of funding for the SPP 1666 Priority programme of the German Research Foundation (DFG) that runs from mid-2016 to 2019. Researchers from across Germany contribute their specific expertise and work together in these Priority programmes (SPPs).

Germany holds a very strong position in the field, in particular through the pioneering work of Laurens Molenkamp from Universität Würzburg, considered by a number of experts in this field as a candidate for the Nobel Prize. Research teams presented a total of 56 projects, of which 37 were recommended for approval. The selection was made by a review committee of international experts.
We are pleased about numerous approved projects on the dynamics of topological insulators – an important area of work at HZB.

For further information: www.helmholtz-berlin.de/topins

Oliver Rader


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.