Chemie von Eisen in wässriger Lösung entschlüsselt

Durch die Kombination von zwei unterschiedlichen Methoden (RIXS und Fluoreszenzspektroskopie) konnte das Team die elektronischen Zustände der Probe im Detail vermessen.

Durch die Kombination von zwei unterschiedlichen Methoden (RIXS und Fluoreszenzspektroskopie) konnte das Team die elektronischen Zustände der Probe im Detail vermessen. © R. Golnak/ HZB

Ein HZB-Team hat an der Synchrotronquelle BESSY II zwei unterschiedliche Methoden kombiniert, um mehr Informationen zur Chemie von Übergangsmetallverbindungen in Lösung zu gewinnen. Solche Verbindungen können als Katalysatoren in Energiematerialien gewünschte Reaktionen befördern, sind aber bislang noch nicht vollständig verstanden.  Sie zeigten an einem einfachen Modellsystem aus Eisen in Wasser, wie sich aus dem systematischen Vergleich sämtlicher elektronischer Wechselwirkungsprozesse ein detailliertes Bild der elektronischen Zustände ermitteln lässt. Die Ergebnisse sind im Open Access Journal von Nature, den Scientific Reports, publiziert.

Wenn ein Blinder ein Elefantenbein betastet, findet er etwas über das Tier heraus. Und möglicherweise lautet sein Urteil: Ein Elefant ist wie eine Säule aufgebaut. Das nicht falsch, aber auch nicht die ganze Wahrheit. So ähnlich ist es mit Messmethoden: sie zeigen einen bestimmten Aspekt sehr gut, andere dagegen gar nicht. Nun ist es einem Team um Professor Emad Aziz vom HZB-Institut „Methoden der Materialentwicklung“ gelungen, zwei verschiedene Methoden so zu kombinieren, dass sich daraus ein nahezu vollständiges Bild der elektronischen Zustände und Wechselwirkungen eines Moleküls in wässriger Lösung ergibt.

Einfaches Modellsystem

Als Modellsystem diente das Hexaaqua(II)-Kation ([Fe(H2O)6]2+). Es besteht aus einem Eisenzentrum mit sechs gleichmäßig angeordneten Wassermolekülen und ist bereits gut verstanden. Eine Theoriegruppe um Oliver Kühn von der Universität Rostock konnte die elektronischen Zustände und ihre möglichen Anregungen in diesem System vorab berechnen, so dass sich die Aussagen aus den experimentellen Daten sehr gut überprüfen ließen.

Detailliertes Bild der elektronischen Zustände

„Weiche Röntgenstrahlung, wie sie schwerpunktmäßig an BESSY II erzeugt wird, eignet sich perfekt, um die so genannte L-Kante abzutasten“, erklärt Ronny Golnak, der die Experimente während seiner Promotion durchgeführt hat. Die L-Kante bezeichnet den Energiebereich, in dem die wichtigen elektronischen Zustände von Übergangsmetallen wie Eisen liegen: von den kernnahen Elektronen in den 1s- und 2p-Schalen bis zu den Valenzelektronen in den 3d-Schalen. Mit Hilfe von Röntgenpulsen werden Elektronen von 2p-Schalen kurzzeitig auf höhere Niveaus angeregt. Diese Anregung kann über zwei unterschiedliche Wege abgebaut werden: entweder über die Abgabe von Licht (strahlende Relaxation), was sich mit Röntgenfluoreszenz-Spektroskopie analysieren lässt - oder aber über die Emission von Elektronen (nichtstrahlende Relaxation), die sich mit Photoelektronen-/Augerelektronen-Spektroskopie vermessen lassen. Beide Analysemethoden sind erst seit wenigen Jahren dank der Mikrojet-Technik auch mit flüssigen Proben, bzw. Proben in Lösung durchführbar.

Informationen aus zwei Messmethoden kombiniert

Für den untersuchten Hexaaqua-Komplex wurden nun die Relaxationskanäle der angeregten 3d-Valenzorbitale im Zusammenspiel mit den stärker gebundenen 3p- und 3s-Orbitalen des Eisens analysiert. Durch die Kombination der Ergebnisse aus den strahlenden und nichtstrahlenden Relaxationsprozessen ließ sich ein vollständiges Bild der unbesetzten und besetzten Energieniveaus gewinnen.

Neue Einblicke in Prozesse an Katalysatoren und Energiematerialien

„Unsere Ergebnisse sind für die Interpretation von Röntgenspektren bedeutend und fördern das Verständnis von elektronischen Wechselwirkungen zwischen den gelösten Komplexen und dem umgebenden Lösungsmittel in katalytischen und funktionalen Materialien“, sagt HZB-Wissenschaftler Bernd Winter. Und Emad Aziz erklärt: „Die Fachwelt war skeptisch, ob unser experimenteller Ansatz funktionieren wird. Das haben wir nun gezeigt. Natürlich werden wir diese Art von Messungen nun auch an weiteren Systemen durchführen, insbesondere an Katalysatoren, die in der physikalischen Chemie in Energiematerialien, aber auch in biologischen Prozessen eine Schlüsselrolle spielen.“

Zur Publikation in Scientific Reports 6, Article number: 24659 (2016) doi:10.1038/srep24659
Joint Analysis of Radiative and Non-Radiative Electronic Relaxation Upon X-ray Irradiation of Transition Metal Aqueous Solutions, Ronny Golnak, Sergey I. Bokarev, Robert Seidel, Jie Xiao, Gilbert Grell, Kaan Atak, Isaak Unger, Stephan Thürmer, Saadullah G. Aziz, Oliver Kühn, Bernd Winter & Emad F. Aziz

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.