Helmholtz Innovation Labs: Neues Förderinstrument der Helmholtz-Gemeinschaft
Das Helmholtz-Zentrum Berlin (HZB) erhält eine von sieben Projektförderungen und stärkt damit den Technologietransfer im Themenfeld Energiematerialien
Das HZB baut das Helmholtz Innovation Lab HySPRINT auf, um zusammen mit Unternehmenspartnern neue Materialkombinationen und Prozesse für Energieanwendungen zu entwickeln. Die Basis bilden Silizium und metallorganische Perowskit-Kristalle. Die Helmholtz-Gemeinschaft fördert das Projekt über die nächsten fünf Jahre aus dem Impuls- und Vernetzungsfonds mit 1,9 Millionen Euro, dazu kommen Eigenanteile des HZB sowie der Industriepartner.
Die Helmholtz-Gemeinschaft fördert insgesamt sieben Helmholtz Innovation Labs, um den Transfer von Forschungsergebnissen in die Anwendung zu stärken. Sie stellt dafür in den kommenden fünf Jahren rund zwölf Millionen Euro zur Verfügung.
Der HZB-Antrag konnte sich unter 27 Konzepten durchsetzen. HySPRINT steht für „Hybrid Silicon Perovskite Research, Integration & Novel Technologies“. Im Mittelpunkt stehen hybride Materialien und Bauelemente auf Basis von Silizium und Perowskitkristallen, die für die Energiewandlung in der Photovoltaik aber auch für die solare Wasserstoffproduktion eingesetzt werden können. „Dabei wollen wir die Silizium Hybrid-Technologie, die Flüssigphasenkristallisation von Silizium, sowie die Nanoimprint Lithographie und die Prototyp-Realisierung mittels 3D-Mikrokontaktierungstechniken gemeinsam mit Industriepartnern weiter entwickeln und das Potenzial für die Produktion aufzeigen“, sagt Prof. Dr. Bernd Rech vom HZB-Institut für Siliziumphotovoltaik.
Das Innovation Lab wird als ein Core Lab des HZB aufgebaut und wird eng mit dem HZB-Institut PVcomB zusammenarbeiten. Prof. Dr. Anke Kaysser-Pyzalla, die wissenschaftliche Geschäftsführerin am HZB, betont:„HySPRINT wird sich als kreative Säule des Technologietransfers am HZB und in der Helmholtz-Gemeinschaft etablieren!“
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14449;sprache=de
- Link kopieren
-
Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
-
Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
-
Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.