Helmholtz Innovation Labs: HySPRINT at HZB

HZB will be setting up the new Helmholtz HySPRINT Innovation Lab for jointly developing new combinations of materials and processes in energy applications with commercial partners. Silicon and metal-organic perovskite crystals will be the centre point of the Lab’s work. The Helmholtz Association is supporting the project for the next five years with 1.9 million Euros from its Initiative and Networking Fund, with additional contributions from HZB itself as well as from industry.

The Helmholtz Association is supporting a total of seven Helmholtz Innovation Labs in order to strengthen the transfer of research results to the applications domain. The Association is making about twelve million Euros available over the next five years for setting up and operating the Innovation Labs.

The HZB proposal was selected from a field of 27 competing applications. HySPRINT stands for “Hybrid Silicon Perovskite Research, Integration & Novel Technologies”. It will focus on hybrid materials and components based on silicon and perovskite crystals able to be employed for energy conversion in photovoltaics as well as for solar hydrogen production.

“We intend to further develop silicon hybrid technology, liquid-phase crystallisation of silicon, nano-print lithography as well as the implementation of prototypes by means of 3D techniques for microcontacts in cooperation with industrial partners – and demonstrate the potential for industrial-scale production”, says Professor Bernd Rech from the HZB Institute for Silicon Photovoltaics.

The Innovation Lab will be set up as a core lab at HZB and will work closely with the HZB Institute PVcomB. Professor Anke Kaysser-Pyzalla, Scientific Director of HZB poitbs out: “HySPRINT will establish itself as a creative pillar of Technology Transfer at HZB and within the Helmholtz Association.”

red.

  • Copy link

You might also be interested in

  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.