Koexistenz von Supraleitung und Ladungsdichtewellen beobachtet

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist.

Mit Hilfe der EELS-Elektronenspektroskopie lassen sich im Rasterelektronenmikroskop die einzelnen Atome in der Heterostruktur kartieren: Die supraleitenden YBaCuO-Regionen sind an Yttrium (Blau) und Kupfer (pink) erkennbar, während in der ferromagnetischen Schicht Mangan (grün) und Lanthan (rot) eingebaut ist. © MPI Stuttgart

Physiker haben an BESSY II ein Materialsystem aus dünnen ferromagnetischen und supraleitenden Schichten untersucht. An den Grenzflächen bildeten sich Ladungsdichtewellen aus, die erstaunlich weit in die supraleitende Schicht hineinreichten. Die Ergebnisse zeigen neue Wege auf, um die Supraleitung zu beeinflussen und sind nun in Nature Materials publiziert.

Hochtemperatursupraleiter sind seit gut 30 Jahren bekannt: es sind besondere Metalloxid-Verbindungen, die Strom ohne Energieverlust leiten können. Anders als konventionelle Supraleiter müssen sie dafür nicht bis nahe an den absoluten Temperatur-Nullpunkt gekühlt werden. Vielmehr schaffen sie dies bei vergleichsweise hohen Temperaturen.

Ein typischer Hochtemperatursupraleiter ist Yttrium-Barium-Kupferoxid (YBaCuO) mit einer Sprungtemperatur von 92 Kelvin (minus 181 Grad Celsius). Das Kühlen mit flüssigem Stickstoff reicht aus, um diese Temperatur zu unterschreiten. Ein Team um Prof. Bernhard Keimer vom MPI für Festkörperforschung in Stuttgart und Dr. Eugen Weschke vom HZB haben nun in einem System aus dünnen YBaCuO- sowie ferromagnetischen Nanoschichten entdeckt, wie sich Valenzelektronen verschieben lassen.

Kleinste kollektive Verschiebungen der Ladungen beobachtet

Mit resonanter Röntgenstreuung haben sie an BESSY II die Grenzflächen zwischen den ferromagnetischen und supraleitenden Schichten untersucht. Alex Frano konnte in seiner Doktorarbeit nachweisen, dass es sich dabei die Valenzelektronen in den Kupferatomen der YBaCuO-Dünnschicht minimal verschieben. Diese Verschiebungen führen zu so genannten Ladungsdichtewellen in der YBaCuO-Schicht, und zwar nicht nur in der unmittelbaren Nähe der Grenzflächen sondern über die gesamte Dicke der Schicht. „Das ist erstaunlich, weil frühere Untersuchungen gezeigt hatten, dass Supraleitung die Ausbildung von Ladungsdichtewellen unterdrückt“, erklärt Frano.

Ladungsdichtewelle trotz Supraleitung stabil

„Indem wir die Grenzflächen in die Heterostrukturen gebracht haben, ist es gelungen die Ladungsdichtewellen in Gegenwart der Supraleitung zu stabilisieren“, erläutert Eugen Weschke. Die YBaCuO-Schichten bleiben supraleitend, obwohl sich gleichzeitig die Ladungsdichten periodisch ändern. „Wie genau diese Koexistenz auf mikroskopischer Skala aussieht, ist eine spannende Frage, die mit weiteren Experimenten untersucht werden muss“, so der HZB-Forscher. Besonders interessant wäre es herauszufinden, ob man über diesen Mechanismus und durch weiteres geschicktes Design der Grenzflächen den supraleitenden Zustand gezielt kontrollieren kann.

Original-Publikation:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces, A. Frano, S. Blanco-Canosa, E. Schierle, Y. Lu, M. Wu, M. Bluschke, M. Minola, G. Christiani, H. U. Habermeier, G. Logvenov, Y. Wang, P. A. van Aken, E. Benckiser, E. Weschke, M. Le Tacon & B. Keimer, Nature Materials (2016) doi: 10.1038/nmat4682

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Nachricht
    16.06.2025
    Michael Naguib als Humboldt-Forschungspreisträger am HZB
    Professor Michael Naguib von der Tulane University in den USA ist einer der Entdecker einer neuen Klasse von 2D-Materialien: MXene zeichnen sich durch eine blätterteigartige Struktur aus und bieten viele Anwendungsmöglichkeiten, beispielsweise bei der Erzeugung von grünem Wasserstoff oder als Speichermedium für elektrische Energie. Mit dem Humboldt-Forschungspreis im Jahr 2025 verstärkt Michael Naguib seine Zusammenarbeit mit Prof. Volker Presser am Leibniz-Institut für Neue Materialien in Saarbrücken und mit Dr. Tristan Petit am HZB.
  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern.