Klangkünstler Gerriet K. Sharma entwirft akustische Skulpturen zu BESSY VSR

Gerriet K. Sharma beim Aufbau des Ikosaederlautsprechers, Foto: Kristijan Smok (izlog)

Gerriet K. Sharma beim Aufbau des Ikosaederlautsprechers, Foto: Kristijan Smok (izlog)

Von 13. bis 19. Juli 2016 zeichnet der Künstler Klänge vor Ort auf

Der Elektronenspeicherring BESSY II bietet die Kulisse für ein außergewöhnliches Kunstprojekt. Der Klangkünstler Gerriet K. Sharma von der Kunsthochschule Graz will Prinzipien der Beschleunigerphysik in akustische, dreidimensionale Kompositionen übersetzen. Vom 13. bis 19. Juli wird der Künstler vor Ort sein, um Klänge direkt im Elektronenspeicherring einzufangen. 

Inspiriert zu dieser Arbeit hat Gerriet K. Sharma das Ausbau-Projekt BESSY VSR. Beschleunigerexperten vom HZB wollen die Synchrotronstrahlungsquelle BESSY II zu einem variablen Pulslängen-Speicherring ausbauen – als erstes Team weltweit. An jedem Messplatz sollen dann lange oder kurze Lichtpulse verfügbar sein. Seit Frühjahr 2016 arbeitet der Künstler gemeinsam mit HZB-Forschern daran, dieses ungewöhnliche Projekt der Beschleunigerphysik in ein außergewöhnliches 3D-Hörerlebnis umzusetzen.

Gerriet K. Sharma realisiert die einzigartigen Klangwelten von BESSY VSR mit einem Ikosaederlautsprecher. Die damit erzeugten akustischen Figuren bewegen sich beinahe körperlich im Raum. „Die Verbindung von Kunst und Wissenschaft ist bei diesem Projekt offensichtlich. Beide arbeiten mit Frequenzen und Überlagerungen – nur mit unterschiedlichen Medien“, sagt Kerstin Berthold, die gemeinsam mit Forschern aus dem Institut für Beschleunigerphysik das Kunstprojekt am HZB betreut.

Nach mehreren Monaten intensiver Kompositionsarbeit wird der Künstler voraussichtlich im Sommer 2017 sein Werk aufführen.

Projektbeteiligte

Künstler:
Gerriet K. Sharma, Universität für Musik und darstellende Kunst Graz. Sharma studierte Medienkunst an der Kunsthochschule für Medien, Köln, und Komposition und Computermusik an der Kunsthochschule Graz. 2008 wurde er mit dem Deutschen Klangkunstpreis ausgezeichnet.

Helmholtz-Zentrum Berlin:
Institut für Beschleunigerphysik:
Paul Goslawski
Godehard Wüstefeld
Martin Ruprecht

Abteilung Kommunikation
Kerstin Berthold

(kb/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.