Manual of characterisation techniques for thin-film solar cells published with the involvement of HZB researchers

Cover: WILEY-VCH 

Cover: WILEY-VCH 

In August 2016, the second, enlarged edition of the reference book "Advanced Characterization Techniques for Thin-Film Solar Cells" appeared from renowned publisher WILEY-VCH. Co-editor is HZB researcher Dr. Daniel Abou-Ras. A total of eleven authors from HZB wrote chapters for this reference. It provides a comprehensive overview of many characterisation and modelling techniques that can be employed for solar cell materials and components.

The heavy involvement of HZB showcases HZB’s extensive methodical expertise in characterising thin films of energy-related materials. Over 24 chapters, the reader gains a comprehensive insight into the characterisation of components and analysis of materials, as well as an overview of the possibilities for simulating material properties, growth processes and component functions.

Link to the book and overview

bibliographic data:

"Advanced Characterization Techniques for Thin Film Solar Cells, 2 Volumes, 2nd Edition"
Daniel Abou-Ras (Editor), Thomas Kirchartz (Editor), Uwe Rau (Editor)

ISBN: 978-3-527-33992-1, 760 pages, August 2016

(red.)


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).