International conference QENS 2016 and Workshop WINS 2016 in Potsdam

Participants of QENS 2016 and WINS 2016

Participants of QENS 2016 and WINS 2016

From 5th to 9th of September HZB has hosted two international scientific events dedicated to the study of the dynamics at nanoscale, QENS and WINS 2016. While Quasielastic Neutron scattering conference (QENS 2016) was dedicated to the scientific applications, international Workshop on Inelastic spectrometers WINS 2016 allowed to touch on the instrumental aspects. 108 scientists from all over the world participated in these events organized in the heart of the Potsdam.

For the first time in the history of QENS the conference was focused on the exploration of materials for energy and information technology applications. Modeling, either to deeper understanding of experimental data, or in the prediction of new materials and phenomena was integral part of the programme. A special session will be dedicated to water. “Very nice program, perfect organization and all this in such a nice place!” summarized Jean-Marc Zanotti from Saclay, France.

(mr)

  • Copy link

You might also be interested in

  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.
  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.