Aus der Forschung der Nutzer: Wie Wasser Glas bewegt

Eine neue Generation von Sensoren: die Schuppen des "versteinerten" Kiefernzapfens biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück.

Eine neue Generation von Sensoren: die Schuppen des "versteinerten" Kiefernzapfens biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück. © WZS

Pflanzen nutzen Kapillarkräfte, um Flüssigkeit hochzuziehen. Dafür besitzen sie ein Netz aus dünnen Röhren (Kapiilaren), das auch dafür sorgt, dass sich das Material bei Flüssigkeitsaufnahme ausdehnt. Auch bei Zapfen von Nadelbäumen verhält es sich so. Ein Team am Lehrstuhl für Biogene Polymere der Technischen Universität München (TUM) am Wissenschaftszentrum Straubing (WZS) hat nun die pflanzlichen Bestandteile durch Silikatglas ersetzt. Dabei stellten sie fest, dass sich auch die Schuppen des künstlich versteinerten Zapfens bei Aufnahme von Feuchtigkeit bewegen. Untersuchungen an der Synchrotronquelle BESSY II in Berlin zeigten, dass die innere Struktur des Kiefernzapfens auch im fossilisierten Zustand bin in den Nanometerbereich erhalten bleibt. Die Arbeit legt Grundlagen für eine neue Generation von Sensoren.

Mit einem speziellen Verfahren lassen sich Kiefernzapfen künstlich versteinern. Dabei werden die biologischen Bestandteile vollständig in das technische Material Silikatglas umgewandelt. „Wir haben ein zuvor entwickeltes und verfeinertes ‚Bio-Templatierungsverfahren‘ zum ersten Mal für die Herstellung eines Materials mit strukturbasierter Funktion verwendet“, sagt Dr. Daniel Van Opdenbosch vom WZS. Aufwändige Untersuchungen an der Synchrotronquelle BESSY II in Berlin zeigten, dass dabei die innere Struktur des Kiefernzapfens erhalten blieb. Vor allem wurde der Zapfen durch das neue Templatierungsverfahren komplett versteinert bis hinunter auf die Ebene von millionstel Millimetern.

„Wir konnten zeigen, dass sich der transformierte Körper wie sein biologisches Original bei Feuchtigkeitsaufnahme bewegt“, erklärt Van Opdenbosch weiter, „die Schuppen der versteinerten Zapfen biegen sich bei Befeuchtung gegen die Schwerkraft aufwärts und beim Trocknen wieder zurück in ihre Ausgangsposition.“ Durch das genaue Abformen von Pflanzenstrukturen bei Erhalt ihrer charakteristischen Eigenschaften versprechen sich die Wissenschaftler neue Möglichkeiten bei der Entwicklung von Funktionsmaterialien.

Sensoren mit geringem Technikaufwand herstellbar

Basierend auf den bisherigen Ergebnissen könnten poröse keramische, mehrlagige Sensoren mit relativ geringem technischem Aufwand produziert werden. Diese neuen Sensoren reagieren auf Feuchtigkeitsveränderung mit Bewegung. Damit ließen sie sich in chemisch aggressiven und physikalisch anspruchsvollen Umgebungen einsetzen, um verlässlich messen, schalten und steuern zu können.

Herkömmliche bimetallische oder zweilagige Aktuatoren sind wegen ihrer Zusammensetzung aus Metallen oder Kunststoffen anfällig für eine Zersetzung durch Korrosion, Säuren und Basen, Oxidation, hohe Temperaturen und Strahlung. Gegen alle diese Einflüsse sind Keramikoxide im besonderen Maße widerstandsfähig.

Das Projekt „Hierarchically structured porous ceramics and composites from nanocasting of plant cell walls“ wurde im Rahmen des Schwerpunktprogramms 1420 „Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials“ durch die Deutsche Forschungsgemeinschaft gefördert.

Beteiligt waren das Straubinger Team um Daniel Van Opdenbosch, eine Gruppe vom Institut für Physik der österreichischen Montanuniversität Leoben und ein Team vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam.

Die Forschungsergebnisse sind im Fachjournal „Advanced Materials“ 2016, DOI 10.1002/adma.201600117 publiziert.

Die Originalinfo aus dem WZS finden Sie hier:

Tipp: Zu diesem Thema gibt es ein anschauliches Video

TU München/WZS

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 25 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.