HZB and ANSTO have extended their Memorandum of Understanding

<span class="Beschriftung1"><span>ANSTO: Adi Paterson and Simone Richter, HZB: Prof Anke Kaysser-Pyzalla and Thomas Frederking. </span></span>

ANSTO: Adi Paterson and Simone Richter, HZB: Prof Anke Kaysser-Pyzalla and Thomas Frederking. © ANSTO

Advancing energy materials research together

The heads of the HZB and the Australian Nuclear Science and Technology Organisation (ANSTO) recently have considerably extended the Memorandum of Understanding existing between the two institutions since 2015. They intend to further enhance their cooperation particularly in the area of energy materials research.

The memorandum comprises agreements on the exchange of personnel, advanced training, and reciprocal access to instruments located at the large-scale facilities of ANSTO and the HZB. The Australian Nuclear Science and Technology Organisation (ANSTO) research hub is located near Sydney, operating a synchrotron source as well as other infrastructures including the OPAL research reactor and Australian Centre for Neutron Scattering. ANSTO will be taking over the BioRef-Reflektometer for conducting research on soft matter and solid-state/liquid interfaces from BER II, the Berlin-based neutron source that will be shut down at the end of 2019. It will be available to the user community beginning 2018 under the name “Spatz” (German for “sparrow”). ANSTO is also active in the field of accelerator research, one in which HZB has likewise attained an international reputation.

Moreover, HZB has enhanced its collaboration with other leading Australian institutions. In summer 2016, Monash University appointed three HZB scientists from the field of energy materials research as adjunct professors.

More Information on ANSTO: http://www.ansto.gov.au

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.