Neuer Rekord an BESSY II: Zehn Millionen Ionen in einer Ionen-Falle erstmals bis auf 7,4 Kelvin gekühlt

Die zweiatomaren Nickel-Ionen (grau) sind bei tiefen Temperaturen in einer RF-Ionenfalle gefangen, dabei dient kaltes Helium-Gas (blau) zur Wärmeabfuhr. Das magnetische Feld richtet die Ionen aus.

Die zweiatomaren Nickel-Ionen (grau) sind bei tiefen Temperaturen in einer RF-Ionenfalle gefangen, dabei dient kaltes Helium-Gas (blau) zur Wärmeabfuhr. Das magnetische Feld richtet die Ionen aus. © T. Lau/ HZB

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen elektrisch geladene Molekül-Ionen gefangen sind. Es gelang ihnen, mit einem Puffergas etwa zehn Millionen Ionen auf 7,4 Kelvin (ca. -265,8 Grad Celsius) abzukühlen. Das ist ein neuer Rekord. Zuvor war es nur möglich, etwa tausend Ionen mit Puffergas auf 7,5 Kelvin abzukühlen. Für spektroskopische Analysen reichen tausend Ionen jedoch bei weitem nicht aus. Mit der neuen Methode steht erstmals eine Ionenfalle für die Röntgenspektroskopie bei tiefen Temperaturen bereit, mit der man den Magnetismus und Grundzustände von Molekül-Ionen untersuchen kann. Dies liefert die Grundlagen, um neue Materialien für eine energieeffiziente Informationstechnologie zu entwickeln. Die Arbeit ist im Journal of Chemical Physics veröffentlicht.

„Bisher gingen alle davon aus, dass es nicht möglich sei, mit einer Quadrupol-Ionenfalle für so hohe Ionendichten noch tiefere Temperaturen zu erreichen. Aber es geht eben doch“, sagt HZB-Forscher Tobias Lau. Denn das elektromagnetische Wechselfeld fängt die gespeicherten Ionen nicht nur ein, sondern „schüttelt“ sie auch, so dass sie ständig Energie gewinnen und die Temperatur steigt. Um diese Energie wieder abzuführen, hat das Team Helium als Puffergas eingeführt, und zwar mit relativ hohem Druck. „Man muss sich dies als eine Art kalten Sirup vorstellen, der die Makro-Bewegungen der Teilchen dämpft und Rotation und Translation verlangsamt“, sagt Vicente Zamudio-Bayer von der Universität Freiburg.

Einzigartiger Versuchsaufbau

Die Experimente wurden an der UE52-PGM-Endstation an BESSY II durchgeführt, wo sich die Polarisation der weichen Röntgenstrahlung variabel einstellen lässt. Der Versuchsaufbau an dieser Beamline ist weltweit einzigartig, weil er die Untersuchung von Ionen bei tiefen Temperaturen mit Magnetfeldern und Röntgenspektroskopie ermöglicht. Dabei kann die Probe unter einem äußeren Magnetfeld mit zirkular polarisiertem Röntgenlicht analysiert werden (zirkularer magnetischer Röntgen-Dichroismus, engl. XMCD). Dies gibt Aufschluss über die magnetischen Momente der Elektronen, unterteilt in ihre Spin- und Bahnbeiträge. 

Magnetische Momente von Nickel2-Ionenermittelt

„Durch die besonders tiefen Temperaturen konnten wir erstmals die magnetischen Momente von Nickel-Dimer-Kationen experimentell ermitteln“, erklärt Lau. Die Arbeit an der Ionenfalle ist Teil eines größeren Projekts von HZB und Uni Freiburg, das durch das BMBF (BMBF-05K13Vf2) gefördert wird.

Ausblick: Noch tiefere Temperaturen

„Wir arbeiten nun daran, noch tiefere Temperaturen zu erreichen. Wir hoffen, dass wir bald bis auf 5 Kelvin kommen“, sagt Zamudio-Bayer. Denn je tiefer die Temperatur, desto deutlicher zeigen sich magnetische Effekte.

Auch die Nutzer profitieren

Alle Nutzer der Ionenfalle an der UE52-PGM-Endstation an BESSY II können aber jetzt schon von dem Rekord profitieren. „Hier lassen sich nicht nur der Magnetismus, sondern auch viele weitere Eigenschaften von ganz unterschiedlichen Molekülen spektroskopisch untersuchen, zum Beispiel auch von Übergangsmetall-Komplex-Ionen. Das wird also für viele Nutzergruppen, insbesondere aus der physikalischen Chemie, attraktiv sein“, meint Lau.

Zur Publikation:Electronic ground state of Ni2+, V. Zamudio-Bayer, R. Lindblad, C. Bülow, G. Leistner, A. Terasaki, B. v. Issendorff, and J. T. Lau, J. Chem. Phys. 145, 194302 (2016). DOI: 10.1063/1.4967821

arö

Das könnte Sie auch interessieren

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.
  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Nachricht
    13.01.2023
    Lesetipp: Bunsen-Magazin mit Schwerpunkt Wasserforschung
    Wasser besitzt nicht nur einige bekannte Anomalien, sondern steckt noch immer voller Überraschungen. Die erste Ausgabe 2023 des Bunsen-Magazins widmet sich der molekularen Wasserforschung, vom Ozean bis zu Prozessen bei der Elektrolyse. Das Heft präsentiert Beiträge von Forschenden, die im Rahmen einer europäischen Forschungsinitiative im „Centre for Molecular Water Science“ (CMWS) kooperieren. Ein Team am HZB stellt darin Ergebnisse aus der Synchrotronspektroskopie von Wasser vor. Denn an modernen Röntgenquellen lassen sich molekulare und elektronische Prozesse in Wasser im Detail untersuchen.