A new record at BESSY II: ten million ions in an ion trap cooled for the first time to 7.4 K

Diatomic nickel ions (gray) are captured at cryogenic temperatures in an RF ion trap; cold helium gas (blue) serves to dissipate the heat. The magnetic field orients the ions. </p>
<p>

Diatomic nickel ions (gray) are captured at cryogenic temperatures in an RF ion trap; cold helium gas (blue) serves to dissipate the heat. The magnetic field orients the ions.

© T. Lau/ HZB

Magnetic ground states spectroscopically ascertained

An international team from Sweden, Japan, and Germany has set a new temperature record for what are known as quadrupole ion traps that capture electrically charged molecular ions. They succeeded in cooling about ten million ions down to 7.4 K (approx. -265.8 degrees Celsius) using a buffer gas. That is a new record. Previously it was only possible to cool down about one thousand ions to 7.5 K using buffer gas. However, a thousand ions are not nearly enough for spectroscopic analyses. The ion trap with this new method provides a new opportunity to use cryogenic X-ray spectroscopy to study the magnetism and ground states of molecular ions. This is the foundation needed to develop new materials for energy-efficient information technologies. The work has been published in the Journal of Chemical Physics.

“Until now, everyone assumed it would not be possible to reach lower temperatures at such a high density of ions with a quadrupole ion trap. But it can be done”, says HZB researcher Tobias Lau. This is because the RF electromagnetic field doesn't just trap the stored ions, but “jiggles” them as well so they are constantly gaining energy and rising in temperature. In order to draw off this additional energy, the team introduced helium as a buffer gas, and at relatively high pressure. “You have to imagine this as kind of a cold syrup that damps the macro motion of the particles, slowing their rotation and translation”, explains Vicente Zamudio-Bayer from the University of Freiburg.

Unique experimental set-up

The experiments were carried out using the UE52-PGM station at BESSY II where polarisation of the soft X-ray radiation can be varied. The experimental set-up at this beamline is unique in facilitating X-ray spectroscopy of cryogenic ions under externally applied magnetic fields. The sample can be analysed in an externally applied magnetic field using circularly polarised X-rays (X-ray magnetic circular dichroism/XMCD). This yields information about the magnetic moments of the electrons subdivided  into both spin and orbital contributions.

Magnetic moments of N2-cations

“We were able for the first time to experimentally determine the magnetic moments of nickel dimercations thanks to the especially low temperatures”, Lau continued. The work on the ion trap is part of a larger project of HZB and the Univ. of Freiburg being funded by the German Federal Ministry of Education and Research (Grant No. BMBF-05K13Vf2).

Outlook: lower temperatures

“We are now working on reaching even lower temperatures. We hope we will soon get to 5 K”, offers Zamudio-Bayer. The lower the temperature, the more clearly the magnetic effects show up.

Benefit for users

But all users of the ion trap at the BESSY II UE52-PGM station can benefit already from the record achieved. “Not only magnetism, but also many other properties of a wide range of different molecules can be studied spectroscopically here, such as transition-metal ion complexes. That will therefore be attractive to many users, especially those in physical chemistry”, Lau thinks.

Publication:Electronic ground state of Ni2+, V. Zamudio-Bayer, R. Lindblad, C. Bülow, G. Leistner, A. Terasaki, B. v. Issendorff, and J. T. Lau, J. Chem. Phys. 145, 194302 (2016). DOI: 10.1063/1.4967821

arö


You might also be interested in

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.
  • New joint leadership for BESSY II
    News
    13.06.2024
    New joint leadership for BESSY II
    Andreas Jankowiak as new Technical Director and Facility Spokesperson Antje Vollmer share management responsibilities

    Prof. Andreas Jankowiak has been appointed Technical Director of BESSY II with a term of office of three years as of 1 June 2024 by resolution of the HZB board of directors. Antje Vollmer will start her second term as BESSY II Facility Spokesperson on 1 July 2024. Together, they form the new management duo to coordinate the scientific and technical development of the BESSY II X-ray source on behalf of the HZB management.

  • Chilean President visits Helmholtz-Zentrum Berlin
    News
    12.06.2024
    Chilean President visits Helmholtz-Zentrum Berlin
    The President of Chile, Gabriel Boric Font, visited HZB on Tuesday with a delegation of 50 people. Among the highlights of the evening were the signing of a Memorandum of Understanding between the Chilean Corporation for the Promotion of Production (CORFO) and HZB and a visit to BESSY II light source.