NEAT starts user operation

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment.

Gerrit Günther und Veronka Grzymek help Zhilun Lu with the experiment. © HZB

The newly built time of flight spectrometre NEAT has welcomed its first users: Jie Ma from Shanghai Jiao Tong University and his colleague Zhilun Lu examined magnetic excitations in crystalline samples and enjoyed fast data rate and high flexibility of instrumental configurations. NEAT team is now looking forward to further new studies and user experiments!     

The scientists from Shanghai did find what they were looking for, after only 60 minutes of data collection: “Our experiment was very successful and we hope to publish the results soon”, Zhilun Lu said.

Neutron time-of-flight spectrometer NEAT has a long history of successful application to study dynamics and function on very broad time and space domains ranging from 10-14 – 10-10 seconds and from 0.05 to up to about 5 nanometers respectively. Started originally in 1995 as NEAT I, NEAT II has been fully rebuild in order to address the needs of the user community for more powerful instruments. The upgrade started in 2010 after a rigorous internal and external selection process and resulted in 70 fold higher flux and a number of new instrumental capabilities including an improved angular resolution, larger accessible wavelength range and a design suited for high magnetic field experiments up to 15 Tesla.

 

red.

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.