HZB and Freie Universität Berlin are establishing the joint research group “Macromolecular Crystallography”

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin are engaged in the of training young scientists. The participants produce samples and examine at the MX beamlines of BESSY II.

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin are engaged in the of training young scientists. The participants produce samples and examine at the MX beamlines of BESSY II.

For eight years, HZB’s “Macromolecular Crystallography” workgroup has been successfully cooperating with the “Structural Biochemistry” research group headed by Prof. Markus Wahl at the Freie Universität Berlin. They are about to intensify this cooperation. The two institutes are establishing a joint research group dedicated to studying the biochemistry of genetic information processing. This research group benefits in particular from access to the three MX beamlines, where it can study protein crystals using the synchrotron light from BESSY II.

“We are thrilled at how this cooperation agreement gives our workgroup a strong scientific connection, which will be fruitful for everyone involved,” Dr. Manfred Weiss, head of the HZB group “Macromolecular Crystallography” said at the inauguration of the research group on 22 February 2017.

While the HZB is primarily working on enhancing the instrumentation and methodological aspects of macromolecular crystallography, the group of the Freie Universität Berlin is introducing its expertise in the field of structure–function relationships in gene regulation. “We will benefit especially from the HZB group’s expertise in crystallographic methods of drug discovery,” Prof. Dr. Markus Wahl is convinced.

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin have been cooperating highly successfully for a long time already and, among other things, are actively engaged in the of training young scientists. Together with the Max Delbrück Center for Molecular Medicine, they offer a methodological course for students, where the participants can produce samples and examine them at the MX beamlines of BESSY II. This practical education for budding biochemists is unique in Germany. The graduates become sought-after experts in a branch of research and economics that is very important in the Capital Region.

A significant contribution to this development came from the Joint MX-Laboratory, which has combined the expertise of five partners since 2010: researchers of Humboldt Universität zu Berlin, Freie Universität Berlin, the Max Delbrück Center and the Leibniz-Institut für Molekulare Pharmakologie enjoy easy access to the crystallography experimental stations at BESSY II and carry out joint research projects. “The Joint MX-Lab is a great success story for all partners involved and should be continued,” says Manfred Weiss.

(sz)

  • Copy link

You might also be interested in

  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.