HZB and Freie Universität Berlin are establishing the joint research group “Macromolecular Crystallography”

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin are engaged in the of training young scientists. The participants produce samples and examine at the MX beamlines of BESSY II.

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin are engaged in the of training young scientists. The participants produce samples and examine at the MX beamlines of BESSY II.

For eight years, HZB’s “Macromolecular Crystallography” workgroup has been successfully cooperating with the “Structural Biochemistry” research group headed by Prof. Markus Wahl at the Freie Universität Berlin. They are about to intensify this cooperation. The two institutes are establishing a joint research group dedicated to studying the biochemistry of genetic information processing. This research group benefits in particular from access to the three MX beamlines, where it can study protein crystals using the synchrotron light from BESSY II.

“We are thrilled at how this cooperation agreement gives our workgroup a strong scientific connection, which will be fruitful for everyone involved,” Dr. Manfred Weiss, head of the HZB group “Macromolecular Crystallography” said at the inauguration of the research group on 22 February 2017.

While the HZB is primarily working on enhancing the instrumentation and methodological aspects of macromolecular crystallography, the group of the Freie Universität Berlin is introducing its expertise in the field of structure–function relationships in gene regulation. “We will benefit especially from the HZB group’s expertise in crystallographic methods of drug discovery,” Prof. Dr. Markus Wahl is convinced.

The teams of Freie Universität Berlin and Helmholtz Zentrum Berlin have been cooperating highly successfully for a long time already and, among other things, are actively engaged in the of training young scientists. Together with the Max Delbrück Center for Molecular Medicine, they offer a methodological course for students, where the participants can produce samples and examine them at the MX beamlines of BESSY II. This practical education for budding biochemists is unique in Germany. The graduates become sought-after experts in a branch of research and economics that is very important in the Capital Region.

A significant contribution to this development came from the Joint MX-Laboratory, which has combined the expertise of five partners since 2010: researchers of Humboldt Universität zu Berlin, Freie Universität Berlin, the Max Delbrück Center and the Leibniz-Institut für Molekulare Pharmakologie enjoy easy access to the crystallography experimental stations at BESSY II and carry out joint research projects. “The Joint MX-Lab is a great success story for all partners involved and should be continued,” says Manfred Weiss.

(sz)

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.