HZB und Freie Universität Berlin bauen die gemeinsame Forschergruppe „Makromolekulare Kristallographie“ auf

Gemeinsame Nachwuchsausbildung: In Lehrveranstaltungen stellen Studierende Proben her und untersuchen sie an den MX-Beamlines von BESSY II. Foto: HZB

Gemeinsame Nachwuchsausbildung: In Lehrveranstaltungen stellen Studierende Proben her und untersuchen sie an den MX-Beamlines von BESSY II. Foto: HZB

Seit acht Jahren kooperiert die HZB-Arbeitsgruppe „Makromolekulare Kristallographie“ erfolgreich mit dem Lehrstuhl „Strukturbiochemie“ unter der Leitung von Prof. Markus Wahl an der Freien Universität Berlin. Nun wird sich diese Zusammenarbeit weiter intensivieren. Beide Einrichtungen bauen eine gemeinsame Forschergruppe auf, um biochemische Vorgänge bei der Verarbeitung von genetischen Informationen zu untersuchen. Die Forschergruppe profitiert dabei insbesondere vom Zugang zu den drei MX-Beamlines, an denen Proteinkristalle mit dem Synchrotronlicht von BESSY II untersucht werden können.

„Wir freuen uns sehr, dass unsere Arbeitsgruppe durch die Kooperationsvereinbarung eine intensive wissenschaftliche Anbindung bekommt, die sehr fruchtbar für alle Beteiligten sein wird“, sagt Dr. Manfred Weiss, Leiter der HZB-Gruppe „Makromolekulare Kristallographie“ bei der feierlichen Inauguration der Forschergruppe am 22. Februar 2017.

Während das HZB-Team vor allem an der Weiterentwicklung der Instrumentierung sowie an methodischen Aspekten der makromolekularen Kristallographie forscht, bringt die Gruppe der Freien Universität Berlin ihre Expertise auf dem Gebiet der Struktur-Funktionsbeziehungen bei der Genregulation ein. „Wir werden besonders vom Knowhow der HZB-Gruppe in kristallographischen Methoden der Wirkstoffentwicklung profitieren“, ist Prof. Dr. Markus Wahl überzeugt.

Die Teams von Freier Universität Berlin und Helmholtz-Zentrum Berlin kooperieren seit langem sehr erfolgreich miteinander und engagieren sich unter anderem in der Nachwuchsausbildung. Sie bieten gemeinsam mit dem Max-Delbrück-Zentrum für Molekulare Medizin eine methodische Lehrveranstaltung für Studierende an, in der die Teilnehmerinnen und Teilnehmer Proben herstellen und an MX-Beamlines von BESSY II untersuchen können. Dies ist eine in Deutschland einzigartige praktische Ausbildung für angehende Biochemiker. Die Absolventinnen und Absolventen sind gefragte Fachkräfte in einem für die Hauptstadtregion sehr wichtigen Forschungs- und Wirtschaftszweig.

Zu dieser Entwicklung entscheidend beigetragen hat das Joint MX-Laboratory, das seit 2010 die Expertisen von fünf Partnern bündelt: Forschende der Humboldt-Universität zu Berlin, der Freien Universität Berlin, des Max-Delbrück-Zentrums und des Forschungsinstituts für Molekulare Pharmakologie erhalten einfacheren Zugang zu den Kristallographie-Messplätzen an BESSY II und setzen gemeinsame Forschungsprojekte um. „Das Joint MX-Lab ist für alle Partner eine große Erfolgsgeschichte und soll fortgesetzt werden“, sagt Manfred Weiss.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.