How to increase efficiencies of ultrathin CIGSe solar cells

Nanostructures trap the light, shows this illustration on the cover in  Advanced Optical Materials.

Nanostructures trap the light, shows this illustration on the cover in Advanced Optical Materials. © Adv. Opt. Mat. 5/2017

Nanoparticles at the back help harvesting the light.

Ultrathin CIGSe solar cells need much less rare earth elements and energy for production. Unfortunately, they are much less efficient too. Now a team at HZB together with a group in the Netherlands has shown how to prevent the absorption loss of ultrathin CIGSe cells.  They designed  nanostructured  back contacts for light trapping and could achieve a new record value of the the short circuit current density reaching nearly the best values for thicker CIGSe-cells.

CIGSe solar cells consist of Copper, Indium, Gallium and Selenide in a chalcopyrite structure and convert light into electrical energy. Thin film CIGSe cells have reached efficiency values as high as 22.6 percent in the lab and have some advantages in comparison to the widespread silicon solar modules, among them a very short energy payback time and a reduced sensitivity to shading.

Much less Indium needed

However, the mass production of CIGSe cells may impact the supply of Indium, since it belongs to the group of rare elements. An interesting option is to make thinner CIGSe films. Whereas a typical thin film CIGSe is 2-3 micrometers thick, “ultrathin” films of below 0,5 micrometer thickness would need much less Indium for a given area. Unfortunately, this will lead to a dramatic loss of absorption and thus efficiencies of cells. 

Nanostructured back contacts plus reflector layers

The Young Investigator team Nanooptix at HZB, led by Prof. Martina Schmid, shows now how to prevent the absorption loss of ultrathin CIGSe cells.  They, together with a group of Prof. Albert Polman in the Institute for Atomic and Molecular Physics (AMOLF), Netherlands,   designed  nanostructured  back contacts consisting of a silica nanopattern on ITO for light trapping in ultrathin CIGSe cells.

Record short circuit current density

Combined with a back reflector and an anti-reflection layer, the champion cell with a CIGSe film of only 0.39 micrometer thickness shows a short circuit current density of 34.0 mA/cm2, which is, to date, the highest value in any ultrathin CIGSe cell and reaches 93% short circuit current density of record thick counterparts.  

Nanostructures improve electrical properties as well

More interestingly, the nanostructured back contacts simultaneously improve the electrical performance of the cells, causing an efficiency enhancement of 47% relative to flat cells of equal thickness. “The achievements prove that the nanostructures are able to simultaneously benefit ultrathin CIGSe solar cells from both optical  and electrical aspects” Guanchao Yin, first author of the publication, claims. “This result shows that optoelectronic nanopatterning provides a path to high efficiency cells with reduced materials consumption”, Prof. Martina Schmid says, who has now joined University of Duisburg as a professor for experimental physics. “With the Young Investigator team I could start my career and I thank HZB and Helmholtz-Association for this chance”, she says.

The work is published as a cover in  Advanced Optical Materials (5, 2017):
Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.