How to increase efficiencies of ultrathin CIGSe solar cells

Nanostructures trap the light, shows this illustration on the cover in  Advanced Optical Materials.

Nanostructures trap the light, shows this illustration on the cover in Advanced Optical Materials. © Adv. Opt. Mat. 5/2017

Nanoparticles at the back help harvesting the light.

Ultrathin CIGSe solar cells need much less rare earth elements and energy for production. Unfortunately, they are much less efficient too. Now a team at HZB together with a group in the Netherlands has shown how to prevent the absorption loss of ultrathin CIGSe cells.  They designed  nanostructured  back contacts for light trapping and could achieve a new record value of the the short circuit current density reaching nearly the best values for thicker CIGSe-cells.

CIGSe solar cells consist of Copper, Indium, Gallium and Selenide in a chalcopyrite structure and convert light into electrical energy. Thin film CIGSe cells have reached efficiency values as high as 22.6 percent in the lab and have some advantages in comparison to the widespread silicon solar modules, among them a very short energy payback time and a reduced sensitivity to shading.

Much less Indium needed

However, the mass production of CIGSe cells may impact the supply of Indium, since it belongs to the group of rare elements. An interesting option is to make thinner CIGSe films. Whereas a typical thin film CIGSe is 2-3 micrometers thick, “ultrathin” films of below 0,5 micrometer thickness would need much less Indium for a given area. Unfortunately, this will lead to a dramatic loss of absorption and thus efficiencies of cells. 

Nanostructured back contacts plus reflector layers

The Young Investigator team Nanooptix at HZB, led by Prof. Martina Schmid, shows now how to prevent the absorption loss of ultrathin CIGSe cells.  They, together with a group of Prof. Albert Polman in the Institute for Atomic and Molecular Physics (AMOLF), Netherlands,   designed  nanostructured  back contacts consisting of a silica nanopattern on ITO for light trapping in ultrathin CIGSe cells.

Record short circuit current density

Combined with a back reflector and an anti-reflection layer, the champion cell with a CIGSe film of only 0.39 micrometer thickness shows a short circuit current density of 34.0 mA/cm2, which is, to date, the highest value in any ultrathin CIGSe cell and reaches 93% short circuit current density of record thick counterparts.  

Nanostructures improve electrical properties as well

More interestingly, the nanostructured back contacts simultaneously improve the electrical performance of the cells, causing an efficiency enhancement of 47% relative to flat cells of equal thickness. “The achievements prove that the nanostructures are able to simultaneously benefit ultrathin CIGSe solar cells from both optical  and electrical aspects” Guanchao Yin, first author of the publication, claims. “This result shows that optoelectronic nanopatterning provides a path to high efficiency cells with reduced materials consumption”, Prof. Martina Schmid says, who has now joined University of Duisburg as a professor for experimental physics. “With the Young Investigator team I could start my career and I thank HZB and Helmholtz-Association for this chance”, she says.

The work is published as a cover in  Advanced Optical Materials (5, 2017):
Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

arö

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.