How to increase efficiencies of ultrathin CIGSe solar cells

Nanostructures trap the light, shows this illustration on the cover in  Advanced Optical Materials.

Nanostructures trap the light, shows this illustration on the cover in Advanced Optical Materials. © Adv. Opt. Mat. 5/2017

Nanoparticles at the back help harvesting the light.

Ultrathin CIGSe solar cells need much less rare earth elements and energy for production. Unfortunately, they are much less efficient too. Now a team at HZB together with a group in the Netherlands has shown how to prevent the absorption loss of ultrathin CIGSe cells.  They designed  nanostructured  back contacts for light trapping and could achieve a new record value of the the short circuit current density reaching nearly the best values for thicker CIGSe-cells.

CIGSe solar cells consist of Copper, Indium, Gallium and Selenide in a chalcopyrite structure and convert light into electrical energy. Thin film CIGSe cells have reached efficiency values as high as 22.6 percent in the lab and have some advantages in comparison to the widespread silicon solar modules, among them a very short energy payback time and a reduced sensitivity to shading.

Much less Indium needed

However, the mass production of CIGSe cells may impact the supply of Indium, since it belongs to the group of rare elements. An interesting option is to make thinner CIGSe films. Whereas a typical thin film CIGSe is 2-3 micrometers thick, “ultrathin” films of below 0,5 micrometer thickness would need much less Indium for a given area. Unfortunately, this will lead to a dramatic loss of absorption and thus efficiencies of cells. 

Nanostructured back contacts plus reflector layers

The Young Investigator team Nanooptix at HZB, led by Prof. Martina Schmid, shows now how to prevent the absorption loss of ultrathin CIGSe cells.  They, together with a group of Prof. Albert Polman in the Institute for Atomic and Molecular Physics (AMOLF), Netherlands,   designed  nanostructured  back contacts consisting of a silica nanopattern on ITO for light trapping in ultrathin CIGSe cells.

Record short circuit current density

Combined with a back reflector and an anti-reflection layer, the champion cell with a CIGSe film of only 0.39 micrometer thickness shows a short circuit current density of 34.0 mA/cm2, which is, to date, the highest value in any ultrathin CIGSe cell and reaches 93% short circuit current density of record thick counterparts.  

Nanostructures improve electrical properties as well

More interestingly, the nanostructured back contacts simultaneously improve the electrical performance of the cells, causing an efficiency enhancement of 47% relative to flat cells of equal thickness. “The achievements prove that the nanostructures are able to simultaneously benefit ultrathin CIGSe solar cells from both optical  and electrical aspects” Guanchao Yin, first author of the publication, claims. “This result shows that optoelectronic nanopatterning provides a path to high efficiency cells with reduced materials consumption”, Prof. Martina Schmid says, who has now joined University of Duisburg as a professor for experimental physics. “With the Young Investigator team I could start my career and I thank HZB and Helmholtz-Association for this chance”, she says.

The work is published as a cover in  Advanced Optical Materials (5, 2017):
Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.