Finding and understanding low cost catalysts: it all comes down to the iron

Chromium enhances the current density which is directly related to catalytic activity.

Chromium enhances the current density which is directly related to catalytic activity. © HZB/RUB

A team has investigated more than one hundred iron-nickel catalysts containing various admixtures of chromium. At BESSY II, they also analysed the configurations of the electrons in the individual elements. The team showed that an increasing proportion of chromium primarily influences the energy levels of the iron electrons, which are important for the catalytic effect. The results of this high-throughput study will assist the knowledge-based search for better specific catalysts.

Catalysts can accelerate chemical reactions, while remaining unchanged. They are necessary for many reactions – including if you want to split water into hydrogen and oxygen using sunlight to chemically store solar energy. And yet, the best catalysts for this reaction are still made of platinum or other rare elements. These are too expensive for broad usage. Research teams are therefore searching everywhere for alternatives.

But how do you actually go about finding good new catalysts? And why are some materials better catalysts than others, though they only differ slightly in their compositions? The Young Investigator Group named Operando Characterization of Solar Fuel Materials headed by Prof. Kathrin Aziz-Lange together with partners from the Ruhr-Universität-Bochum has dedicated itself to this problem.

They selected a material system for this of iron, nickel, and oxygen that is currently a particularly promising candidate for catalysts. Then they admixed chromium as a tertiary metal that can further increase the efficiency. They did not produce just one material, though, but instead an entire material library in which the composition of the three metals varies continuously over a total of more than one hundred samples. In this way, the team was able to empirically determine how the introduction of chromium in the catalyst altered the reaction speed and which features of the materials facilitate higher speeds.

They determined the catalytic performance for all of the samples (s. illustration). In parallel to this, they investigated the energy levels of the electrons for the individual elements that are related to the catalytic activity using spectroscopic methods at the BESSY II synchrotron source in Berlin. “We recorded more than 500 spectra of the material library”, explains Christoph Schwanke who carried out these measurements as part of his doctoral studies.

The results of this high-throughput study show that the configuration of the electrons around the nickel and chromium hardly changes with rising chromium content. However, the rising proportion of chromium alters the energy level of the iron electrons. “We were able to observe that the performance of the catalysts correlates with a specific configuration of iron electrons”, explains Prof. Kathrin Aziz-Lange. “This is important information, not just for deeper understanding of catalytic materials, but for targeted synthesis of good catalysts as well.”

The study gives clues for the systematic and knowledge-based development of new catalysts. Combinatoric materials research thus permits a great many materials to be investigated in a short time and to identify candidates that are especially promising.

To the publication: Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx 

Christoph Schwanke, Helge Sören Stein, Lifei Xi, Kirill Sliozberg, Wolfgang Schuhmann, Alfred Ludwig and Kathrin M. Lange

Scientific Reports 7, (2017) doi: 10.1038/srep44192

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.