Nanodiamanten als Energiematerialien: kleine „Anhänger“ mit großer Wirkung

Die Nanodiamanten in Lösung wurden mit unterschiedlichen Molekülgruppen modifiziert.

Die Nanodiamanten in Lösung wurden mit unterschiedlichen Molekülgruppen modifiziert. © HZB

Ein internationales Forscherteam hat neue Einblicke in die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen gewonnen. Durch Versuche an Synchrotronquellen konnten sie feststellen, dass kleine Molekülgruppen auf den Nanodiamantoberflächen großen Einfluss auf das Wasserstoffbrücken-Netzwerk ausüben. Dies könnte insbesondere für (photo)-katalytische Anwendungen interessant sein, zum Beispiel für die Produktion von solaren Brennstoffen mit Kohlendioxid und Licht.

Diamanten kennen wir als durchsichtige schimmernde Kristalle, die in Wasser rasch versinken. Aber tatsächlich kommt es darauf an, wie groß die Diamantkristalle sind. Die allerkleinesten solcher Kristalle, die nur wenige Nanometer dick sind, schweben in Wasser und bilden eine ölige, schwarze Mischung, ein so genanntes Kolloid. Solche Nanodiamanten in Lösung lassen sich vielseitig anwenden, zum Beispiel in der medizinischen Forschung oder als metall-freie Katalysatoren für die Umwandlung von Licht in chemische Energie.  

Was passiert zwischen Nanodiamanten und Wasser?

Dabei spielen die Wechselwirkungen zwischen den Nanopartikeln und den umgebenden Wassermolekülen eine extrem wichtige Rolle. Sie entscheiden darüber, ob das Kolloid stabil bleibt oder sich entmischt, bestimmen die optischen Eigenschaften, aber vor allem auch die chemische und katalytische Reaktivität. Was jedoch im Detail an den Grenzflächen zwischen Nanodiamanten und Wassermolekülen passiert, war bislang kaum bekannt.

Oberflächen mit Molekülen modifiziert

Nun hat eine internationale Kooperation zwischen russischen, japanischen, amerikanischen, französischen und deutschen Forschungsgruppen erstmals die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen genauer untersucht. Durch die Kombination verschiedener spektroskopischer Methoden an den Synchrotronquellen BESSY II am HZB in Berlin und an UVSOR III in Japan gelang es ihnen, die Wechselwirkungen im Einzelnen aufzuschlüsseln. Dafür modifizierten sie die Oberflächen der Nanodiamanten, mit Wasserstoff (-H) oder kleinen Molekülen, die an den Oberflächen der Nanodiamanten andockten, zum Beispiel Karboxyl-Gruppen (-COOH) und Hydroxylgruppen (–OH).

H-Atome könnten katalytische Aktivität steigern

Dabei zeigte sich, dass die Oberflächen-Gruppen einen unterschiedlich starken Einfluss auf die Wasserstoffbrücken-Netzwerke im Kolloid ausüben. Während Hydroxyl- und Karboxyl-Gruppen an den Nanodiamanten die Anordnung der umgebenden Wassermoleküle nur wenig veränderten, führten angehängte Wasserstoffatome zu einer deutlichen Veränderung: „Die Wasserstoffbrücken zwischen den Wassermolekülen sind viel schwächer als die, die man in normalem Wasser findet“,  sagt der HZB-Physiker Dr. Tristan Petit.  Dies könnte mit der Anreicherung von Elektronen an den Grenzflächen zwischen Nanodiamanten und Wasser zusammenhängen, vermuten die Forscher. „Diamant-Oberflächen mit angelagerten Wasserstoffatomen setzen effizient Elektronen in Wasser frei, was die Reduktion von CO2 in Wasser mit Hilfe von UV-Licht ermöglichen könnte“, erklärt Petit. „Die einzigartige Struktur von Wasser, die mit den hydrogenierten Oberflächen einhergeht, spielt sicher eine bislang unterschätzte Rolle in diesem aufregenden Prozess.”

The Journal of Physical Chemistry, Part C (2017): "Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds"; Petit, Tristan; Puskar, Ljiljana; Dolenko, Tatiana; Choudhury, Sneha; Ritter, Eglof; Burikov, Sergey; Laptinskiy, Kirill; Brzustowski, Quentin; Schade, Ulrich; Yuzawa, Hayato; Nagasaka, Masanari; Kosugi, Nobuhiro; Kurzyp, Magdalena; Venerosy, Amélie; Girard, Hugues; Arnault, Jean-Charles; Osawa, Eiji; Nunn, Nicholas; Shenderova, Olga; Aziz, Emad.

DOI: 10.1021/acs.jpcc.7b00721

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • Neue Helmholtz-Nachwuchsgruppe am HZB zu Perowskit-Solarzellen
    Nachricht
    26.06.2025
    Neue Helmholtz-Nachwuchsgruppe am HZB zu Perowskit-Solarzellen
    Silvia Mariotti baut die neue Helmholtz-Nachwuchsgruppe „Perowskit-basierte Mehrfachsolarzellen“ auf. Die Perowskit-Expertin, die zuvor an der Universität Okinawa in Japan tätig war, will die Entwicklung von Mehrfachsolarzellen aus verschiedenen Perowskit-Schichten vorantreiben.