HZB and Freie Universität Berlin establish the joint research group “X-Ray Microscopy” for studying complex cellular processes

In May this year, the joint research group “X-Ray Microscopy” was launched, combining the expertise of teams led by Prof. Dr. Gerd Schneider (Helmholtz-Zentrum Berlin) and Prof. Dr. Helge Ewers (Freie Universität Berlin). While Ewers’ group contributes its experience in the field of optical microscopy and biological research, the HZB workgroup is responsible for X-ray microscopy at the synchrotron source BESSY II. The two methods help researchers to gain a detailed insight into the processes taking place inside cells.

We are very pleased about the new cooperation with Prof. Ewers’ workgroup. It gives our own activities in this field a much stronger connection to the biological research being done at the university,” says Prof. Dr. Gerd Schneider. The core duties of his department at HZB include making advancements to the x-ray microscopes and lenses at the synchrotron source BESSY II. The active exchange between the new cooperation partners will give a new boost to method development, says Schneider. Prof. Dr. Helge Ewers is also excited about the future-oriented cooperation: “X-ray microscopy opens up entirely new possibilities for us in the research of intracellular processes.”

The joint research group is all about the complementary use of optical and X-ray microscopy. Optical microscopy and super-resolution methods are excellent for locating proteins marked with dye molecules in tissue samples. X-ray microscopy, in turn, allows correlative imaging of the distribution of proteins, viruses or nanoparticles over a relatively large section in high-resolution and three-dimensions. The two microscopy methods thus deliver a comprehensive picture of the intracellular structures and processes.

After a successful upgrade, the X-ray microscope TXM at the synchrotron source BESSY II is now available again to users. Aside from biological studies, which can now be conducted with the combined expertise in the joint research group, the X-ray microscope is used above all for exploring various questions of materials and energy research.

(sz)

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.