Neu am Campus Wannsee: CoreLab Quantenmaterialien

In diesem optischen Zonenschmelzofen enstehen große Einkristalle.

In diesem optischen Zonenschmelzofen enstehen große Einkristalle. © M. Setzpfandt/HZB

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten.

Eine Laue-Apparatur ermöglicht es, die Kristalle präzise auszurichten. © M. Setzpfandt/HZB

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe.

Die Messung von spezifischer Wärme und anderen Eigenschaften gibt Hinweise auf Phasenübergänge in der Probe. © M. Setzpfandt/HZB

Das Helmholtz-Zentrum Berlin erweitert sein Angebot an CoreLabs für die Forschung an Energiematerialien. Zusätzlich zu den fünf bereits etablierten CoreLabs wurde nun ein CoreLab für Quantenmaterialien eingerichtet. Ein Forscherteam vom HZB-Institut für Quantenphänomene in neuen Materialien betreut das CoreLab mit dem modernen Gerätepark. Das CoreLab steht auch Messgästen aus anderen Forschungseinrichtungen offen.  

Quantenphänomene treten in der Regel am deutlichsten in perfekten Einkristallen und bei tiefen Temperaturen auf. Um solche Einkristalle herzustellen, mit Laborexperimenten zu vermessen oder für Messungen an der Neutronenquelle BER II oder bei BESSY II vorzubereiten, hat ein Team um Prof. Dr. Bella Lake und Dr. Konrad Siemensmeyer ein eigenes CoreLab für Quantenmaterialien aufgebaut. Auch externe Forscherinnen und Forscher können dieses CoreLab nutzen und dabei von der Expertise des HZB-Teams profitieren.

Zucht und Vorbereitung von Einkristallen

Denn häufig liegen die Materialien nicht als große Einkristalle vor, sondern müssen erst als Pulver in winzigen Mikrokristallen hergestellt werden. Schon diese Synthese ist oft schwierig und ist deshalb ein zentrales Thema in diesem HZB-CoreLab. Aus diesen Pulverproben lassen sich dann mit einem leistungsstarken optischen Zonenschmelzofen größere Einkristalle ziehen, die deutlich aussagekräftigere Messungen erlauben. Die Zucht von Einkristallen aus Pulverproben erfordert viel Erfahrung, die am HZB vorhanden ist. Eine Laue-Apparatur ermöglicht es, diese Kristalle präzise auszurichten. Im Anschluss lassen sich die Kristalle dann für weitere Experimente mit einer Fadensäge orientiert schneiden oder ihre Flächen polieren. Die Methoden sind sehr flexibel und für alle möglichen Messungen einsetzbar. Proben für Neutronenexperimente, Experimente an BESSY II oder Laborexperimente sind hier leicht herzustellen. Weniger erfahrene Nutzer werden eng betreut, damit auch dort der Erfolg sichergestellt werden kann.

Transporteigenschaften und Phasenübergänge

In einem weiteren Raum stehen hohe magnetische Felder, tiefe Temperaturen mit zwei „Physical Property Measurement Systems“ sowie ein empfindliches SQUID-Magnetometer bereit. Damit lassen sich Transporteigenschaften wie die Wärmeleitfähigkeit, aber auch die Magnetisierung und spezifische Wärme von Materialien messen. Die Messung dieser Eigenschaften macht so genannte Phasenübergänge sichtbar. Diese Phasenübergänge hängen mit quantenphysikalischen Gesetzmäßigkeiten zusammen und zeigen an, dass sich im Innern der Materialien neue Ordnungen etablieren.

CoreLabs für Nutzer aus Forschung und Industrie

Als Betreiber von Großgeräten hat das HZB große Erfahrung mit der Organisation eines externen Nutzerbetriebs. Diese Erfahrung bringt das HZB nun auch in den Betrieb der CoreLabs ein, die mit modernsten, teilweise einzigartigen Instrumenten und Geräten für die Analyse und Synthese von Energiematerialien ausgestattet sind. Auch internationale Messgäste und Partner aus der Industrie sind hier willkommen.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.