New at Campus Wannsee: CoreLab Quantum Materials

This optical zone melting furnace is producing large single crystals.

This optical zone melting furnace is producing large single crystals. © M. Setzpfandt/HZB

A Laue apparatus is used for precise alignment of the crystals.

A Laue apparatus is used for precise alignment of the crystals. © M. Setzpfandt/HZB

Phase transitions can be detetcted by measuring transport properties of the sample.

Phase transitions can be detetcted by measuring transport properties of the sample. © M. Setzpfandt/HZB

Helmholtz-Zentrum Berlin has expanded its series of CoreLabs for energy materials research. In addition to the five established CoreLabs, it has now set up a CoreLab for Quantum Materials. A research team from the HZB Institute for Quantum Phenomena in New Materials is responsible for the CoreLab and its modern equipment. The CoreLab is also open to experimenters from other research institutes. 

Quantum phenomena are typically easiest to observe within perfect single crystals at very low temperatures. A team led by Prof. Dr. Bella Lake and Dr. Konrad Siemensmeyer has set up a dedicated CoreLab for Quantum Materials for producing and experimenting with such single crystals in the laboratory, or for preparing them for measurements at the neutron source BER II or the synchrotron light source BESSY II. External researchers are also welcome to use this CoreLab and benefit from the expertise of the HZB team.

Growth and preparation of single crystals

In many cases, the materials of interest are initially produced as microcrystalline powders and not as single crystals. Even the process of synthesising these powders is often difficult. It is therefore a key topic at this HZB CoreLab. In a powerful optical zone melting furnace, powder samples can be regrown as larger single crystals, which yield far more meaningful experimental results. Growing single crystals from powder samples requires a great deal of experience, which HZB possesses. A Laue apparatus is used for precise alignment of the crystals. Next, the crystals are cut in orientation with a wire saw or their surfaces polished in preparation for further experiments. The methods are highly flexible and suitable for all possible experiments. Samples are easily prepared here for experiments at the neutron source, at BESSY II, or in the lab. Less experienced users are closely supervised to ensure the success of their experiments. 

Transport properties and phase transitions

Another room provides high magnetic fields, low temperatures with two “Physical Property Measurement Systems” and a sensitive SQUID magnetometer. These allow the measurement of transport properties such as thermal conductivity, magnetisation and specific heats of materials. Measuring these properties renders so-called phase transitions visible. These phase transitions have a correlation with quantum physical laws and indicate the formation of new structures within the material.

CoreLabs for users in academia and industry

As an operator of large facilities, HZB has great experience in organising external user operation. HZB is now also introducing this experience into the operation of its CoreLabs, which are equipped with latest generation, and sometimes unique, instruments and equipment for analysing and synthesising energy materials. International experimental guests and partners from industry are equally welcome here.

 

arö


You might also be interested in

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.