Kickoff for Joint Lab with IFW Dresden

Kickoff with a meeting on 19 June 2017:  Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right).

Kickoff with a meeting on 19 June 2017: Prof. Borisenko, Dr. Rienks, Prof. Büchner (all IFW), the leader of the Young Investigator Group Dr. Fedorov; Dr. Varykhalov and apl. Prof. Rader (both HZB) (from left to right). © HZB

The Leibniz Institute for Solid State and Materials Research Dresden (IFW) and Helmholtz-Zentrum Berlin (HZB) have created a Joint Lab for “functional quantum materials” and under its umbrella a Young Investigator Group.

The Joint Lab "Functional Quantum Materials" will take advantage of the long-standing expertise of both institutes in energy and materials research and the growth of epitaxial films.  

The new lab is dedicated to explore new materials with promising quantum properties for future applications, for instance in information technologies. The scientists will further develop the common instrumentation at BESSY II with its unique properties - part of them without rival in the world.

With the joint lab, IFW Dresden and HZB intensify their collaboration in research and the promotion of young scientists. Dr. Alexander Fedorov, aged 29, is an internationally renowned young scientist who will move from Cologne to Berlin to head the Young Investigator Group.

O. Rader

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.