Rekord-Solarzellen in HyPerCells Graduiertenschule

Labortour am HZB-Institut f&uuml;r Siliziumphotovoltaik, anl&auml;sslich des HyPerCells Forschungskolloquiums im Mai 2017. </p>
<p>

Labortour am HZB-Institut für Siliziumphotovoltaik, anlässlich des HyPerCells Forschungskolloquiums im Mai 2017.

© HZB

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet.

Die aktive Perowskit-Schicht war nur 350 nm dick. Sie ist in organische Schichten aus dem Fulleren C60 und dem Polymer PTAA eingebettet. © HZB/Uni Potsdam

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4&nbsp;%. Daten: Martin Stolterfoht und Christian Wolff, Universit&auml;t Potsdam.

Stromdichte-Spannungskurve einer Perowskit-Solarzelle mit einer Effizienz von 21.4 %. Daten: Martin Stolterfoht und Christian Wolff, Universität Potsdam.

Erst vor zwei Jahren haben die Universität Potsdam und das Helmholtz-Zentrum Berlin die Graduiertenschule HyPerCells mit dem Forschungsschwerpunkt Perowskite gegründet. Nun haben Gruppen im Rahmen der Graduiertenschule Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent hergestellt. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei.

Hybride Perowskite zählen zu den vielversprechendsten Halbleitermaterialien für neuartige Dünnschichtsolarzellen. Hohe Absorptionskoeffizienten und eine über einen weiten Bereich einstellbare optische Bandlücke machen diese Materialklasse einzigartig. Besonders attraktiv ist dabei die Kombination einer Perowskit-Zelle mit klassischen Halbleitermaterialien wie beispielsweise Silizium in hocheffizienten Tandem-Solarzellen.

Vor diesem Hintergrund wurde vor zwei Jahren die Graduiertenschule HyPerCells gegründet, gemeinschaftlich organisiert durch die Universität Potsdam und das Helmholtz-Zentrum Berlin. In HyPerCells forschen derzeit 15 Doktorandinnen und Doktoranden aus Fachgebieten wie Chemie, Physik, Elektrotechnik und Kristallographie an dem Verständnis und der Weiterentwicklung von Materialien und Zellstrukturen. Erst kürzlich haben sich drei am HZB beheimate Nachwuchsgruppen der Schule angeschlossen. Diese Erweiterung ermöglicht es der Schule, auch anwendungsrelevante Aspekte dieser brisanten Materialklasse im Detail zu verstehen. Wichtige Forschungsthemen der Nachwuchsgruppen geleitet von Steve Albrecht, Eva Unger und Antonio Abate sind die Entwicklung neuer Schichtstrukturen für Tandem-Solarzellen, die Herstellung großflächiger Zellen mittels Drucktechnologien und die Untersuchung von Degradationsmechanismen.

Und das Konzept geht auf. In den letzten Monaten ist es gelungen, Perowskit-Solarzellen mit Rekord-Effizienzen von über 20 Prozent zu realisieren. Das ist ein Spitzenwert für sogenannte „invertierte“ Perowskit-Solarzellen bei Verwendung undotierter Kontaktschichten. Damit ist die Graduiertenschule in Deutschland absoluter Spitzenreiter und im internationalen Vergleich (ganz) vorne mit dabei. Wesentlich für diese Erfolge war ein detailliertes Verständnis der relevanten physikalischen und chemischen Prozesse in diesen Solarzellen. Dieses und weitere wichtige Ergebnisse dieses neuen Photovoltaikmaterials wurden jüngst in hochrangigen Journalen wie Advanced Materials, Energy & Environmental Science, ACS Applied Materials and Interfaces, und Advanced Optical Materials veröffentlicht. Auch auf nationalen und internationalen Konferenzen sind Studenten der Graduiertenschule zunehmend präsent.

Weitere Informationen: www.perovskites.de/

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.