The miracle material graphene: convex as a chesterfield

Scanning Tunneling Microscopy shows the regular corrugation pattern of graphene over clusters of gold.

Scanning Tunneling Microscopy shows the regular corrugation pattern of graphene over clusters of gold. © HZB

A typical Chesterfield pattern. (

A typical Chesterfield pattern. ( © mit freundlicher Genehmigung von Petr Kratochvil

Graphene possesses extreme properties and can be utilised in many ways. Even the spins of graphene can be controlled through use of a trick. This had already been demonstrated by a HZB team some time ago: the physicists applied a layer of graphene onto a nickel substrate and introduced atoms of gold in between (intercalation). The scientists now show why this has such a dramatic influence on the spins in a paper published in 2D Materials. As a result, graphene can also be considered as a material for future information technologies that are based on processing spins as units of information.

Graphene is probably the most exotic form of carbon: all of the atoms are bound to one another solely in a plane (monolayer), forming a matrix of hexagons like a honeycomb. Graphene is strictly two-dimensional, therefore infinitely thin, extremely conductive, perfectly transparent, and quite strong. In addition, this miracle material possesses other interesting properties related to its structure.

For example, the spins (tiny magnetic moments) of the conduction electrons surprisingly can be extremely well controlled. If you apply a layer of graphene to a nickel substrate and shove atoms of gold in between, then what is known as the spin-orbit interaction dramatically rises by a factor of 10,000, allowing the orientation of the spins to be influenced by external fields.

Physicists working with Dr. Andrei Varykhalov at the HZB had already demonstrated several times that this works. However, it was not clear why the presence of the atoms of gold has such a strong effect on the spin splitting behaviour in graphene.

“We wanted to discover how it happens that the high spin-orbit interaction, which is characteristic of gold, is transferred over to graphene”, says Varykhalov. The physicists show in the work recently published that the atoms of gold are not distributed completely uniformly in the interlayer, but instead are located on the nickel substrate in small groups or clusters. These gold clusters in turn form a regular pattern beneath the graphene. Between these clusters nickel atoms remain uncovered by gold. Graphene binds strongly to the nickel, arching over the gold clusters. “It looks almost like a bolster of material on a chesterfield sofa”, explains Varykhalov. “At the points where the gold and carbon come into close contact, we observed an extremely strong spin-orbit interaction arise. This result was supported by scanning tunnelling microscopy, and analyses using density functional theory.”

To the publication:

2D Materials, Vol.4, Nr3 (2017): "Nanostructural origin of giant Rashba effect in intercalated graphene". M Krivenkov, E Golias, D Marchenko, J Sánchez-Barriga, G Bihlmayer, O Rader and A Varykhalov. 

Doi: 10.1088/2053-1583/aa7ad8

arö

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.