Missing link between new topological phases of matter discovered

The Bismut doping is enhanced from 0% (left) to 2.2% (right). Measurements at BESSY II show that this leads to increased bandgaps.

The Bismut doping is enhanced from 0% (left) to 2.2% (right). Measurements at BESSY II show that this leads to increased bandgaps. © HZB

HZB-Physicists at BESSY II have investigated a class of materials that exhibit characteristics of topological insulators. During these studies they discovered a transition between two different topological phases, one of which is ferroelectric, meaning a phase in the material that exhibits spontaneous electric polarisation and can be reversed by an external electric field. This could also lead to new applications such as switching between differing conductivities.

The HZB researchers studied crystalline semiconductor films made of a lead, tin, and selenium alloy (PbSnSe) that were doped additionally with tiny amounts of the element bismuth. These semiconductors belong to the new class of materials called topological insulators, materials that conduct very well at their surfaces while behaving as insulators internally. Doping with 1-2 per cent bismuth has enabled them to observe a new topological phase transition now. The sample changes to a particular topological phase that also possesses the property of ferroelectricity. This means that an external electric field distorts the crystal lattice, whereas conversely, mechanical forces on the lattice can create electric fields.

The effect can be used to develop new functionality, which is also of interest for potential applications. Ferroelectric phase-change materials are employed in DVDs and flash memories, for example. An electrical voltage displaces atoms in the crystal, transforming the insulating material into a metallic one.

The bismuth doping in the PbSnSe films investigated at HZB served as a perturbation. The number of electrons in bismuth does not fit well in the periodic arrangement of atoms within the PbSnSe crystal. “Tiny changes in the atomic structure give rise to fascinating effects in this class of materials”, explains HZB researcher Dr. Jaime Sánchez-Barriga,  principal investigator coordinating the project.

Following detailed analyses of the measurements, only one conclusion remained: the bismuth doping causes a ferroelectric distortion in the lattice that also changes the allowable energy levels of the electrons. “This problem kept us puzzled during several beamtimes until we reproduced the scientific results on a whole new set of samples”, adds Sánchez-Barriga. “Potential applications could arise through ferroelectric phases - ones that have not been thought of before. Lossless conduction of electricity in topological materials can be switched on and off at will, by electrical pulses or by mechanical strain”, explains Prof. Oliver Rader, head  the department Materials for Green Spintronics at HZB.

 

Publication in Nature communications (2017): Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator
Partha S. Mandal, Gunther Springholz, Valentine V. Volobuev, Ondrei Caha, Andrei Varykhalov, Evangelos Golias, Günther Bauer, Oliver Rader, Jaime Sánchez-Barriga

doi: 10.1038/s41467-017-01204-0

 

Note: The investigation has been conducted in close collaboration with researchers from Johannes-Kepler-Universität Linz who also grew the samples. Partha S. Mandal, who carried out the measurements on the material system as part of his dissertation was supported by the Helmholtz Virtual Institute ”New States of Matter and their Excitations”.

 

 

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.