Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy

A short laser pulse pertubates magnetic order in dysprosium. This happens much faster if the sample had a antiferromagnetic order (left) compared to ferromagnetic order (right).

A short laser pulse pertubates magnetic order in dysprosium. This happens much faster if the sample had a antiferromagnetic order (left) compared to ferromagnetic order (right). © HZB

The cover of the 10. november issue of PRL highlights the work done by Nele Thielemann-Kühn and colleagues: The study was selected as well for a Focus story in Physics and an Editors’ Suggestion.

The cover of the 10. november issue of PRL highlights the work done by Nele Thielemann-Kühn and colleagues: The study was selected as well for a Focus story in Physics and an Editors’ Suggestion.

HZB scientists have identified a mechanism with which it may be possible to develop a form of magnetic storage that is faster and more energy-efficient. They compared how different forms of magnetic ordering in the rare-earth metal named dysprosium react to a short laser pulse. They discovered that the magnetic orientation can be altered much faster and with considerably less energy if the magnetic moments of the individual atoms do not all point in the same direction (ferromagnetism), but instead point are rotated against each other (anti-ferromagnetism). The study was published in Physical Review letters on 6. November 2017 and on the cover of the print edition.

Dysprosium is not only the atomic element with the strongest magnetic moments, but it also possesses another interesting property: its magnetic moments point either all the same direction (ferromagnetism) or are tilted against each other, depending on the temperature. This makes it possible to investigate in the very same sample how differently oriented magnetic moments behave when they are excited by an external energy pulse.

Magnetic-order perturbation examined at BESSY II

Physicist Dr. Nele Thielemann-Kühn and her colleagues have now investigated this problem at BESSY II. The BESSY II X-ray source is one of the few facilities worldwide that enables processes as fast as magnetic-order perturbations to be observed. Her finding: the magnetic orientation in antiferromagnetic dysprosium can be much more easily toggled using a short laser pulse than in ferromagnetic dysprosium.

“This is because the magnetic moments at the atomic level are coupled to angular momenta like that of a gyroscope”, explains Thielemann-Kühn. Tipping a rotating gyroscope requires force because its angular momentum must be transferred to another body. “Albert Einstein and Wander Johannes de Haas showed in a famous experiment back in 1915 that when the magnetisation of a suspended bar of iron changes, the bar begins to rotate because the angular momenta of the atomic-level magnets in the suspended bar are transferred to it as a whole. If the atomic-level magnetic momenta are already pointing in different directions initially, their angular momenta can interact with one another and cancel each other out, just as if you were to combine two gyroscopes rotating in opposite directions”, clarifies Dr. Christian Schüssler-Langeheine, head of the group.

Antiferromagnetic order is perturbed faster

The transfer of angular momentum takes time, though.  Antiferromagnetic order, for which this transfer is not required, should therefore be able to be perturbed faster than ferromagnetic order. The empirical evidence for this conjecture has now been delivered in this study by Thielemann-Kühn and her colleagues. Moreover, the team also discovered that the energy needed in the case of the antiferromagnetic momenta is considerably lower than in the case of ferromagnetic order.

From this observation, the scientists have been able to suggest how materials could be developed with a combination of ferromagnetic and antiferromagnetic aligned spins that are suitable as magnetic storage media and might be switched with considerably lower energy expenditure than material made from conventional magnets.

 

Physical Review Letters (06 November 2017): Ultrafast and energy-efficient quenching of spin order: Antiferromagnetism beats ferromagnetism; Nele Thielemann-Kühn, Daniel Schick, Niko Pontius, Christoph Trabant, Rolf Mitzner, Karsten Holldack, Hartmut Zabel, Alexander Föhlisch, Christian Schüßler-Langeheine

DOI: 10.1103/PhysRevLett.119.197202

 

Highlighted as Focus story in "Physics": Quick Changes in Magnetic Materials

 

 

red./arö

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.