Neues Forschungsprojekt mit AVANCIS optimiert CIGS-Dünnschichtsolarmodule im Außeneinsatz

Auf dem Freifeld-Teststand des PVcomB erfasst eine Arbeitsgruppe die Erträge von CIGS-Modulen unter realen Bedingungen. Bild. HZB

Auf dem Freifeld-Teststand des PVcomB erfasst eine Arbeitsgruppe die Erträge von CIGS-Modulen unter realen Bedingungen. Bild. HZB © HZB

Das Photovoltaik-Kompetenzzentrum (PVcomB) am Helmholtz-Zentrum Berlin bringt seine Expertise zur Optimierung der CIGS-Dünnschichtproduktion in das Verbundforschungsprojekt MyCIGS ein. Der CIGS-Modulhersteller AVANCIS, München, koordiniert das Projekt, das vom Bundeswirtschaftsministerium gefördert wird. Mit beteiligt sind auch die Universitäten in Oldenburg und Erlangen-Nürnberg.

Dünnschicht-Solarmodule auf Basis von Kupfer-Indium-Gallium-Diselenid-Verbindungen, kurz CIGS, sind hocheffizient, kostengünstig und vielseitig einsetzbar [1]. Insbesondere können sie auf Grund ihrer besonderen Eigenschaften nicht nur auf Dächern, sondern auch an Gebäudefassaden eingesetzt werden. Die bauwerkintegrierte Photovoltaik (auf Englisch: Building integrated Photovoltaic, BIPV) bietet vielfältige neue ästhetische Gestaltungsmöglichkeiten. Dadurch lassen sich viele  Flächen, besonders in Städten, neu erschließen.

Steigerung des Energieertrages im Außeneinsatz

Nachdem in vielen Projekten der Wirkungsgrad im Vordergrund steht, geht es beim MyCIGS Projekt darum, den Energieertrag unter realen Bedingungen im Außeneinsatz zu optimieren. Hierfür sind neben dem Wirkungsgrad zusätzliche Eigenschaften wie die Temperaturkoeffizienten und die Leistung bei geringer oder diffuser Beleuchtung entscheidend. Auch beim Einsatz von CIGS-Modulen an Fassaden und Gebäuden spielen diese Faktoren eine große Rolle.

Expertise für CIGS-Dünnschichtmodule am PVcomB

„Am PVcomB haben wir langjährige Erfahrungen mit der Charakterisierung und Optimierung von CIGS-Dünnschichten“, erklärt Dr. Reiner Klenk, der für MyCIGS am PVcomB zuständig ist. Mit den zahlreichen am PVcomB etablierten Messmethoden können zentrale Parameter wie Temperaturkoeffizienten und Schwachlichtverhalten auf physikalische Prozesse im Solarmodul zurückgeführt werden. Das Forschungsprojekt passt hervorragend zur Strategie des PVcomB, über die Herstellungstechnologien hinaus neue  Schwerpunkte im Bereich der Verkapselung, Zuverlässigkeit, Freifeld-Messung und Gebäudeintegration zu setzen.

Neue Arbeitsgruppe Outdoor-Performance

So wurde gerade im Rahmen des Helmholtz-Zukunftsprojekts Energiesystemintegration eine neue Arbeitsgruppe gegründet, die von Dr. Carolin Ulbrich geleitet wird. Auf einem Freifeld-Teststand des PVcomB kann diese Arbeitsgruppe nun die Energieerträge realer CIGS-Module messen sowie Daten zur lokalen Einstrahlung und Temperatur erheben.

Optimierte Module

In der Herstellung einzelner Schichten in Solarmodulen verwenden AVANCIS und PVcomB unterschiedliche Technologien und Materialien. Dabei können einzelne Schichten der Projektpartner auch miteinander kombiniert werden. Dadurch entsteht eine breitere Datenbasis, mit der sich der Einfluss der Herstellung auf den Ertrag besser beurteilen lässt.

MyCIGS profitiert außerdem von dem aktuellen Solar-era.net Projekt „PEARL TF-PV“, in dem das PVcomB zusammen mit deutschen, niederländischen und österreichischen Forschungsinstitutionen, Modulherstellern und Solarkraftwerksplanern seine Kompetenzen in der Fehleranalyse von CIGS-Solarmodulen stärkt.

 

[1] White Paper for CIGS Thin-Film Solar Cell Technology

AVANCIS / HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.