Perovskite solar cells: mesoporous interface mitigates the impact of defects

<p class="MsoNoSpacing">SEM-images of the different perovskite solar cell architectures, left with planar interface, right with mesoporous interface. Images are coloured: metal oxide (light blue), interface (red), perovskite (brown), hole conducting layer (dark blue), topped with contact (gold).  Scale bar is 200 nm. </p>
<p>

SEM-images of the different perovskite solar cell architectures, left with planar interface, right with mesoporous interface. Images are coloured: metal oxide (light blue), interface (red), perovskite (brown), hole conducting layer (dark blue), topped with contact (gold). Scale bar is 200 nm.

© A. Gagliardi/TUM

The nominal cell operating life of perovskite solar cells is strongly influenced by their inner architecture.This was shown by two scientists at the Helmholtz-Zentrum Berlin and the Technical University of Munich. They combined experiments with numerical simulations in order to explain this observation.

In only a few years, efficiencies of perovskite solar cells have been raised from 3 per cent to more than 20 per cent. What is more, the material is inexpensive and easy to process, promising a great future for photovoltaics. Unfortunately, there are still some issues, for instance with their nominal operating life: Conversion efficiencies decrease sharply when the material is exposed to UV radiation and electric field, as is the case in real operating conditions. Now, Dr. Antonio Abate, head of a Helmholtz Young Investigators Group at HZB and Prof. Allessio Gagliardi, TU Munich, have published new results on the influence of the architecture of perovskite cells on their nominal operating life in the Journal ACS Energy Letters.

The scientists explored different architectures of perovskite cells, preparing them under identical conditions using metal-oxide electron transport layers (ETL) such as TiO2 and SnO2. One group of cells had a planar interface between perovskite and ETL, whereas in the other one a mesoporous interface was built up, intermingling perovskite and metal oxide to form a sponge like structure that contains a huge number of extremely tiny pores. Surprisingly, the perovskite cell with the mesoporous interface exhibits better output stability over time than the planar ETL-perovskite interface.

After careful experimental observations and numerical simulations, the scientists are now able to provide an explanation: “The benefit induced by the mesoporous interface is fundamentally due to its large surface area”, Abate explains who is working for the Helmholtz Innovation Lab HySPRINT at HZB. Defects that compromise the power output and operating life and which accumulate during operation at the ETL tend to get diluted in this large surface.

The scientists could even obtain a threshold density for those defects: Above a certain threshold, the output power of the solar cell decreases rapidly. But below this threshold the maximum power output remains stable. “We demonstrated that devices in a mesoporous configuration are more resilient to defect accumulation than in a planar configuration”, Abate concludes.

The results are published in ACS Energy Lett., (2018): Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in Perovskite Solar Cells, A. Abate & A. Gagliardi

DOI: 10.1021/acsenergylett.7b01101

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.