Streitfrage in der Festkörperphysik nach 40 Jahren entschieden

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend.

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend. © HZB

Ein internationales Team um Prof. Oliver Rader hat an BESSY II gezeigt, dass  Samariumhexaborid kein topologischer Isolator ist. Durch einen Quanteneffekt wird dieses metallische Material bei sehr tiefen Temperaturen zu einem Kondo-Isolator, zeigt aber dennoch eine Restleitfähigkeit. Theoretische und erste experimentelle Arbeiten hatten zuvor darauf hingedeutet, dass dies auf einen topologischer Isolator schließen lässt. Das Team hat nun in Nature Communications eine überzeugende alternative Erklärung vorgestellt.

Samariumhexaborid (SmB6) ist ein dunkler Feststoff, der bei Raumtemperatur metallisch ist. Dabei gehört Samarium zu den Lanthaniden, einer Gruppe von Elementen mit mehreren Elektronen, die auf lokalisierten, sogenannten f-Orbitalen sitzen, und stark miteinander wechselwirken. Je tiefer die Temperaturen sinken, desto stärker zeigen sich diese Wechselwirkungen. Unterhalb der sogenannten Kondo-Temperatur wird SmB6 zu einem so genannten Kondo-Isolator, benannt nach Jun Kondo, der als erster diesen Quanteneffekt erklären konnte.

Nahe dem absoluten Nullpunkt: Restleitfähigkeit trotz Kondo-Effekt

Nun haben vor etwa 40 Jahren Physiker beobachtet, dass SmB6 bei tiefen Temperaturen unter 4 Kelvin noch eine Restleitfähigkeit behält, deren Ursache bis heute ungeklärt blieb. Nach der Entdeckung der Materialklasse der topologischen Isolatoren vor rund zwölf Jahren wurden Hypothesen laut, dass SmB6 sowohl ein Kondo-Isolator als auch ein topologischer Isolator sein könnte - dies würde die Anomalie in der Leitfähigkeit sehr grundlegend erklären. Tatsächlich deuteten erste Experimente darauf hin.

Nun an BESSY II: Präzise Vermessung der Energiebänder

Nun konnte ein internationales Team um Prof. Oliver Rader besonders gute Proben von SmB6 an BESSY II detailliert untersuchen. Die Proben von Kooperationspartnern aus der Ukraine wurden entlang bestimmter Kristallebenen gespalten und mit Hilfe der weltweit einmaligen höchstauflösenden Apparatur für Photoemissionsspektroskopie ARPES 13 an BESSY II untersucht. Dabei konnten die Physiker die nötigen niedrigen Temperaturen bis hinunter zu 1 Kelvin erreichen und die Energieniveaus der unterschiedlichen Elektronenbänder bezogen auf die Geometrie des Kristalls sehr genau vermessen. 

Analyse der Messdaten zeigt: Kein topologischer Isolator

Ihre Messungen bestätigten zwar den Befund von beweglichen Elektronen an der Oberfläche. Sie belegten aber gleichzeitig, dass sich die Elektronen aufgrund der beobachteten geraden Zahl von Bandüberkreuzungen nicht in topologischen Oberflächenzuständen befinden.

Sondern: Lokale Verschiebung der Bandlücken erklärt Restleitfähigkeit

In den folgenden Experimenten suchten die Forscher intensiv nach einer alternativen Erklärung für die Leitfähigkeit, die inzwischen tatsächlich an der Oberfläche nachgewiesen worden war. „Wir konnten zeigen, dass sich die Lücke zwischen den erlaubten Energieniveaus der Elektronen, die sich durch den Kondo-Effekt auftut, an der Oberfläche ein klein wenig verschoben wird. Deshalb kann die Probe genau dort leitfähig sein. Damit ist aber auch klar, dass die besondere Oberflächenleitfähigkeit nicht von topologischen Eigenschaften verursacht wird“, erklärt Dr. Emile Rienks, der die Experimente zusammen mit dem Doktoranden Peter Hlawenka (HZB und Universität Potsdam) durchgeführt hat.

Ausblick: Grüne Spintronik/Energieffiziente IT

Die Forschung an Topologischen Isolatoren und anderen Materialien, die starke quantenphysikalische Effekte zeigen, könnte zu neuen Bauelementen für eine energieeffiziente Informationstechnologie führen. Informationen könnten mit minimalem Energieeinsatz verarbeitet und gespeichert werden, wenn man die Physik dieser Materialien noch besser verstehen und damit auch kontrollieren kann.

Zur Publikation in Nature Communication (2018): Samarium hexaboride is a trivial surface conductor, P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gabáni, K. Flachbart, O. Rader & E.D.L. Rienks

DOI: 10.1038/s41467-018-02908-7

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.