Leuchtende Nanoarchitekturen aus Galliumarsenid

Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Außenflächen eingefärbt.

Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Außenflächen eingefärbt. © S. Schmitt/HZB

Hier sind die sechs optische Resonanzmoden gezeigt, die in einem Rhombendodekaeder entlang zwei verschiedener Querschnitte möglich sind.

Hier sind die sechs optische Resonanzmoden gezeigt, die in einem Rhombendodekaeder entlang zwei verschiedener Querschnitte möglich sind. © HZB

Einem Team am HZB ist es gelungen, Nanokristalle aus Galliumarsenid auf winzigen Säulen aus Silizium und Germanium aufzuwachsen. Damit lassen sich auf der Basis von Siliziumchips sehr effiziente Bauelemente in für die Optoelektronik interessanten Frequenzbereichen realisieren.

Halbleiter aus Galliumarsenid besitzen im Vergleich zu Silizium deutlich bessere optoelektronische Eigenschaften. Diese Eigenschaften lassen sich mit Nanostrukturierungen gezielt beeinflussen. Eine besonders interessante Nanostrukturierung ist nun dem Team um Dr. Sebastian Schmitt und Prof. Dr. Silke Christiansen gelungen. Aus Australien hatten sie einen Silizium-Wafer erhalten, der mit einer überraschend kristallinen Germaniumschicht bedeckt war. Germanium besitzt nahezu die gleiche Gitterkonstante wie Galliumarsenid und bietet sich daher als ideale Unterlage an.

Nanokristalle auf Nadeln

In diesen Wafer ätzten sie im Abstand von einigen Mikrometern tiefe Gräben ein, bis nur noch eine Reihe feiner Siliziumsäulen mit einem Häubchen aus Germanium auf dem Substrat stehenblieb. Galliumarsenid wurde dann mit metallorganischer Gasphasenepitaxie abgeschieden. So lagerten sich systematisch Gallium- und Arsenatome auf dem Germaniumhäubchen ab, und bildeten einen winzigen, nahezu perfekten Kristall. „Das Germanium wirkt hier wie ein Kristallisationskeim“, erklärt Schmitt, Erstautor der Arbeit, die nun in Advanced Optical Materials erschienen ist.

Die Nanoarchitektur sieht unter dem Elektronenmikroskop spektakulär aus. Auf den ersten Blick meint man, auf jeder Siliziumnadel einen Würfel zu erkennen, der auf der Spitze steht. Auf den zweiten Blick zeigt sich: Es ist in Wirklichkeit ein Rhombendodekaeder - jede der zwölf Flächen ein identischer Rhombus.  

Entscheidende Parameter: Geometrie und Größe

Tatsächlich zeigte diese Nano-Struktur nach Anregung mit einem Laser eine außergewöhnlich starke Lichtemission, und zwar insbesondere im nahinfraroten Bereich. „Während des Wachstums der GaAs-Kristalle werden auch Germanium-Atome in das Kristallgitter eingebaut“, erklärt Schmitt. Dieser Einbau von Germanium führt zu zusätzlichen Energieniveaus für Ladungsträger, die beim Zurückfallen auf ihre ursprünglichen Niveaus Licht abgeben. Dieses Licht wird in optischen Resonanzen des hochsymmetrischen Nanokristalls verstärkt, und die Frequenz dieser Resonanzen lässt sich über Größe und Geometrie der Kristalle gezielt steuern. Im Experiment konnte eine Vielzahl dieser optischen Resonanzen nachgewiesen werden, die auch gut mit den numerischen Berechnungen übereinstimmen.

Neuartige Sensoren, LED oder Solarzellen

„Weil sich die optischen und elektronischen Eigenschaften von Halbleitern durch Nanostrukturierung stark modifizieren lassen, eignen sich solche Materialarchitekturen hervorragend dazu, neuartige Sensoren, Leuchtdioden oder Solarzellen zu entwickeln“, sagt Schmitt.

 

 

Zur Publikation in Advanced Optical Materials (2018):"Germanium template assisted integration of gallium arsenide nanocrystals on silicon: a versatile platform for modern optoelectronic materials"; S. W. Schmitt, G. Sarau, C. Speich,G. H. Döhler, Z. Liu, X. Hao, S. Rechberger, C. Dieker, E. Spiecker, W. Prost, F. J. Tegude, G. Conibeer, M. A. Green and S. H. Christiansen.

Doi: 10.1002/adom.201701329

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.