Themen: HZB-Eigenforschung (90)

Science Highlight    22.02.2018

Leuchtende Nanoarchitekturen aus Galliumarsenid

Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Außenflächen eingefärbt.
Copyright: S. Schmitt/HZB

Hier sind die sechs optische Resonanzmoden gezeigt, die in einem Rhombendodekaeder entlang zwei verschiedener Querschnitte möglich sind.
Copyright: HZB

Einem Team am HZB ist es gelungen, Nanokristalle aus Galliumarsenid auf winzigen Säulen aus Silizium und Germanium aufzuwachsen. Damit lassen sich auf der Basis von Siliziumchips sehr effiziente Bauelemente in für die Optoelektronik interessanten Frequenzbereichen realisieren.

Halbleiter aus Galliumarsenid besitzen im Vergleich zu Silizium deutlich bessere optoelektronische Eigenschaften. Diese Eigenschaften lassen sich mit Nanostrukturierungen gezielt beeinflussen. Eine besonders interessante Nanostrukturierung ist nun dem Team um Dr. Sebastian Schmitt und Prof. Dr. Silke Christiansen gelungen. Aus Australien hatten sie einen Silizium-Wafer erhalten, der mit einer überraschend kristallinen Germaniumschicht bedeckt war. Germanium besitzt nahezu die gleiche Gitterkonstante wie Galliumarsenid und bietet sich daher als ideale Unterlage an.

Nanokristalle auf Nadeln

In diesen Wafer ätzten sie im Abstand von einigen Mikrometern tiefe Gräben ein, bis nur noch eine Reihe feiner Siliziumsäulen mit einem Häubchen aus Germanium auf dem Substrat stehenblieb. Galliumarsenid wurde dann mit metallorganischer Gasphasenepitaxie abgeschieden. So lagerten sich systematisch Gallium- und Arsenatome auf dem Germaniumhäubchen ab, und bildeten einen winzigen, nahezu perfekten Kristall. „Das Germanium wirkt hier wie ein Kristallisationskeim“, erklärt Schmitt, Erstautor der Arbeit, die nun in Advanced Optical Materials erschienen ist.

Die Nanoarchitektur sieht unter dem Elektronenmikroskop spektakulär aus. Auf den ersten Blick meint man, auf jeder Siliziumnadel einen Würfel zu erkennen, der auf der Spitze steht. Auf den zweiten Blick zeigt sich: Es ist in Wirklichkeit ein Rhombendodekaeder - jede der zwölf Flächen ein identischer Rhombus.  

Entscheidende Parameter: Geometrie und Größe

Tatsächlich zeigte diese Nano-Struktur nach Anregung mit einem Laser eine außergewöhnlich starke Lichtemission, und zwar insbesondere im nahinfraroten Bereich. „Während des Wachstums der GaAs-Kristalle werden auch Germanium-Atome in das Kristallgitter eingebaut“, erklärt Schmitt. Dieser Einbau von Germanium führt zu zusätzlichen Energieniveaus für Ladungsträger, die beim Zurückfallen auf ihre ursprünglichen Niveaus Licht abgeben. Dieses Licht wird in optischen Resonanzen des hochsymmetrischen Nanokristalls verstärkt, und die Frequenz dieser Resonanzen lässt sich über Größe und Geometrie der Kristalle gezielt steuern. Im Experiment konnte eine Vielzahl dieser optischen Resonanzen nachgewiesen werden, die auch gut mit den numerischen Berechnungen übereinstimmen.

Neuartige Sensoren, LED oder Solarzellen

„Weil sich die optischen und elektronischen Eigenschaften von Halbleitern durch Nanostrukturierung stark modifizieren lassen, eignen sich solche Materialarchitekturen hervorragend dazu, neuartige Sensoren, Leuchtdioden oder Solarzellen zu entwickeln“, sagt Schmitt.

 

 

Zur Publikation in Advanced Optical Materials (2018):"Germanium template assisted integration of gallium arsenide nanocrystals on silicon: a versatile platform for modern optoelectronic materials"; S. W. Schmitt, G. Sarau, C. Speich,G. H. Döhler, Z. Liu, X. Hao, S. Rechberger, C. Dieker, E. Spiecker, W. Prost, F. J. Tegude, G. Conibeer, M. A. Green and S. H. Christiansen.

Doi: 10.1002/adom.201701329

arö


           



Das könnte Sie auch interessieren
  • <p>Die Kegel symbolisieren die Magnetisierung der Nanopartikel auf dem Bariumtitanat-Gitter. Ohne elektrisches Feld ist ihre Magnetisierung ungeordnet. &nbsp;</p>SCIENCE HIGHLIGHT      14.02.2019

    Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

    Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen. [...]


  • <p>Eine extrem d&uuml;nne Zwischenschicht verbessert die Eigenschaften der CIGSe-Perowskit-Tandemzelle.</p>SCIENCE HIGHLIGHT      31.01.2019

    Hauchdünn und extrem effizient: Dünnschicht-Tandemzelle aus Perowskit- und CIGSe-Halbleitern

    Ein HZB-Team hat eine Tandem-Solarzelle mit reinen Dünnschicht-Solarzellen aus Perowskit und CIGSe hergestellt und charakterisiert. Dabei setzten sie auf ein einfaches, robustes Produktionsverfahren, das sich auch für die Aufskalierung auf große Flächen eignet. Die Tandem-Solarzelle besitzt einen sehr hohen Wirkungsgrad von 21.6 %. Durch weitere Optimierung könnte sie Wirkungsgrade über 30 % erreichen. [...]


  • <p>Wie Lithium in die Silizium-Anode einwandert, hat das Team mit Neutronenstrahlen (rote Pfeile) gemessen.</p>SCIENCE HIGHLIGHT      28.01.2019

    Batterien mit Siliziumanoden: Neutronenexperimente zeigen, wie Oberflächenstrukturen die Kapazität reduzieren

    Theoretisch könnten Anoden aus Silizium zehnmal mehr Lithium-Ionen speichern als die Graphit-Anoden, die seit vielen Jahren in kommerziellen Lithium-Batterien eingesetzt werden. Doch bisher sinkt die Kapazität von Silizium-Anoden mit jedem weiteren Lade-Entladezyklen stark ab. Nun hat ein HZB-Team mit Neutronenexperimenten am BER II in Berlin und am Institut Laue-Langevin in Grenoble aufgeklärt, was an der Oberfläche der Siliziumanode während des Aufladens passiert und welche Prozesse die Kapazität reduzieren. [...]




Newsletter