Neuer Betriebsmodus erstmals im Nutzerbetrieb an BESSY II erfolgreich getestet

Ein Abbild des Strahlungsquellpunktes an einem Dipolmagneten im Twin Orbit Modus. Der zweite Orbit schließt sich nach drei Umläufen und windet sich um den Standardorbit im Zentrum.

Ein Abbild des Strahlungsquellpunktes an einem Dipolmagneten im Twin Orbit Modus. Der zweite Orbit schließt sich nach drei Umläufen und windet sich um den Standardorbit im Zentrum. © HZB

Die erste “Twin Orbit Nutzertestwoche” im Februar 2018 war ein großer Erfolg und verdeutlicht, dass der Modus bei weiterer Entwicklung zukünftig regelmäßig im Nutzerbetrieb angeboten werden könnte. Im Twin Orbit Modus kreisen Elektronenpakete auf zwei unterschiedlichen Umlaufbahnen, ohne sich zu stören. Der Vorteil: So lassen sich ganz unterschiedliche Anforderungen der Messgäste an die Zeitstruktur der Photonenpulse gleichzeitig erfüllen. Außerdem bietet der Twin Orbit Modus eine elegante Möglichkeit, beim Upgrade auf BESSY VSR lange und kurze Lichtpulse zu trennen.  

Um die beiden unterschiedlichen Umlaufbahnen zu erzeugen, mussten sich die Physiker vom HZB-Institut für Beschleunigerphysik intensiv mit nichtlinearen Effekten bei der Strahldynamik auseinandersetzen und diese sehr geschickt manipulieren, um Instabilitäten zu vermeiden. Der Elektronenstrahl besteht aus einzelnen Elektronenpaketen, die in bestimmten zeitlichen Abständen aufeinander folgen. Jede der zwei Umlaufbahnen kann weitgehend unabhängig voneinander mit solchen Elektronenpaketen gefüllt werden. Dadurch lassen sich an den Messplätzen entweder dichte Abfolgen von Lichtpulsen zur Verfügung stellen oder – ganz im Gegenteil – zeitlich voneinander sehr weit getrennte Lichtpulse. So können gleichzeitig unterschiedliche Nutzerexperimente mit dem passenden Licht beliefert werden.  

Erste Experimente an der Metrology Light Source

Es ist ein spannender, aber auch langer Weg zu einem echten Nutzerbetriebsmodus, insbesondere wenn die Arbeiten an der Maschine den Nutzerbetrieb nicht stören dürfen. Die ersten Untersuchungen zu diesem Betriebsmodus begannen 2015 an der Metrology Light Source (MLS), einem kompaktem Speicherring der Physikalisch Technischen Bundesanstalt (PTB), und resultierten dort in einem ersten Nutzerexperiment [1]. Parallel wurden die ersten Experimente zu diesem Betriebsmodus von einem Team aus Beschleunigerphysikern und Strahlrohrbetreuern während der Wartungsphasen an BESSY II durchgeführt.

Keine Ausfälle, Verfügbarkeit 99 Prozent während der Nutzertestwoche

2017 gelang es den HZB-Physikern, den Twin Orbit Modus über Nacht mit TopUp-Injektion stabil zu halten, so dass die erste Testwoche im Nutzerbetrieb für Februar angesetzt werden konnte [2]. Während der ganzen Testwoche gab es keine Ausfälle und Einbußen bei der Strahlstabilität und die Bedingungen waren mit einer Verfügbarkeit von größer 99 Prozent vergleichbar gut wie beim Standard-Nutzerbetrieb.

Elegante Option für BESSY VSR

“Es gibt immer noch viel zu tun, aber wir haben mit dieser Testwoche gezeigt, dass es möglich ist, den Twin-Orbit-Modus im Nutzerbetrieb anzubieten. Und auch für unser Zukunftsprojekt BESSY VSR kann der Twin Orbit Modus eine elegante Möglichkeit bieten, lange und kürzere Lichtpulse voneinander zu trennen”, erklärt Prof. Andreas Jankowiak, der das HZB-Institut für Beschleunigerphysik leitet.

[1] http://accelconf.web.cern.ch/AccelConf/IPAC2015/papers/mopwa021.pdf

[2] http://accelconf.web.cern.ch/AccelConf/ipac2017/papers/wepik057.pdf

 

Dr. Paul Goslawski

  • Link kopieren

Das könnte Sie auch interessieren

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.
  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.