LEAPS join forces with the European Commission to strengthen Europe’s leading role in science

Dr. Caterina Biscari, Director of the ALBA Synchrotron in Spain and Vice Chair of LEAPS, presented the LEAPS Strategy 2030 to Jean-David Malo, Director, Directorate General Research and Innovation, European Commission.

Dr. Caterina Biscari, Director of the ALBA Synchrotron in Spain and Vice Chair of LEAPS, presented the LEAPS Strategy 2030 to Jean-David Malo, Director, Directorate General Research and Innovation, European Commission.

“A world where European science is a catalyst for solving global challenges, a key driver for competitiveness and a compelling force for closer integration and peace through scientific collaboration.” This is the vision of LEAPS, League of European Accelerator-based Photon Sources, on which the LEAPS Strategy 2030 is based. Director Jean-David Malo, DG Research and Innovation, received the strategy today at the Bulgarian Presidency Flagship Conference on Research Infrastructures.

The health, prosperity, and security of European citizens depend on new technology, new treatments and a better understanding of the world around us, all of which point to an increased role and reliance on highly sophisticated analytical tools like accelerator-based light sources to provide the most incisive means of measuring and unravelling atomic and molecular structures of the world around us.

Europe hosts 13 synchrotron radiation facilities and six free electron laser facilities which all of them are founding members of LEAPS. The LEAPS Strategy 2030 shows how the members, by joining forces, will be able to deliver even better capacity and capabilities at their research infrastructures. This will be done through smart specialisation, closer co-operation, better engagement with industry and working together with the existing user communities to reach out to scientists, academic and non-academic, that may not yet know of all the tools and skills available at photon sources for solving questions from all fields of science.

Prof. Bernd Rech, acting head of the Helmholtz-Zentrum in Berlin (HZB) explains: “At HZB we operate BESSY II, a synchrotron light source that specialises in producing soft X-rays for scientific research. We intentionally complement other synchrotron sources in Germany and Europe, the majority of which generate hard X-ray emissions.”

Processes involving delicate chemical bonding and those taking place at surfaces and boundary layers in thin-film materials are often disrupted by higher energies, but can be successfully studied using soft X-rays. Minute magnetic features within thin layers can be delineated as well. The research priorities at BESSY II revolve about energy materials and involve a wide range of potential applications – from next-generation solar cells, to catalytic systems, through to magnetic materials for employment in new energy-efficient information technologies.

“The HZB is completely committed to the LEAPS objectives. By working together, including on developing advanced accelerator-based light sources, we will be able to create here in Europe the most productive research environment possible for using light as a probe”, says Rech. In addition, the future projects coming up at HZB for the advanced development of BESSY II, i.e. BESSY-VSR and bERLinPro, are being coordinated within the European research landscape.

"LEAPS fully embrace the European Commission’s “Open Innovation, Open Science, Open to the World” concept and with the planned activities building on our strategy we hope to make a substantial contribution in making this a reality", concludes Dr. Biscari.

The strategy explains how LEAPS will address key issues of the European Long-Term Sustainability Action Plan, presents roadmaps to optimise national and European resources and also describes the how the path towards FP9 looks with a few carefully selected pilot activities under the Horizon2020 programme.

More Information: www.leaps-initiative.eu

red.

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.