LEAPS: Europas Lichtquellen planen den Weg in die Zukunft

Dr. Caterina Biscari, Direktorin des ALBA Synchrotrons, Barcelona, und Vizepräsidentin von LEAPS übergab am 22. März 2018 die LEAPS Strategie 2030 an Jean-David Malo, Direktor Forschung und Innovation, Europäische Kommission.

Dr. Caterina Biscari, Direktorin des ALBA Synchrotrons, Barcelona, und Vizepräsidentin von LEAPS übergab am 22. März 2018 die LEAPS Strategie 2030 an Jean-David Malo, Direktor Forschung und Innovation, Europäische Kommission.

Eine einzigartige Forschungslandschaft aus beschleunigerbasierten Lichtquellen ermöglicht in Europa internationale Spitzenforschung. Diese Lichtquellen dienen als Supermikroskope oder erlauben Einblicke in extrem rasche Prozesse. Nun liegt die Strategie 2030 vor, um die Weiterentwicklung der Lichtquellen aufeinander abzustimmen. Dies sorgt für optimalen Einsatz der Ressourcen und sichert beste Forschungsbedingungen in Europa. LEAPS-Vizepräsidentin Dr. Caterina Biscari, Direktorin von ALBA, hat nun die Strategie 2030 an Jean-David Malo, Direktor Forschung und Innovation der EU-Kommission übergeben.

Gesundheit, Wohlstand und Sicherheit in unseren europäischen Demokratien hängen davon ab, dass wir die drängenden Probleme rechtzeitig identifizieren und lösen. Ob es um eine saubere Energieversorgung oder wirksame Medikamente geht, um Fortschritte zu erreichen, ist Forschung nötig: Dabei sind moderne beschleunigerbasierte Lichtquellen hervorragende Werkzeuge, um Prozesse in Molekülen und in Materialien im Detail aufzuklären.

Ende 2017 haben sich die europäischen Lichtquellen zur „League of European Accelerator-based Photon Sources“, kurz LEAPS, zusammen geschlossen. Mit der gemeinsamen Strategie haben die LEAPS-Mitglieder nun den Ausbau und die Weiterentwicklung dieser Lichtquellen, ihrer Optiken und Detektoren sorgfältig aufeinander abgestimmt. Dabei setzen sie auf Spezialisierung und Alleinstellungsmerkmale, um bei effizientestem Einsatz von Ressourcen vielfältigste Optionen für die Forschung bereit zu stellen.

„Am Helmholtz-Zentrum Berlin betreiben wir mit BESSY II eine Synchrotronlichtquelle, die auf den weichen Röntgenbereich spezialisiert ist“, erklärt Prof. Bernd Rech, der das HZB kommissarisch leitet. „Damit sind wir bewusst komplementär zu anderen Synchrotronquellen in Deutschland und Europa, die vorwiegend harte Röntgenstrahlung erzeugen.“  Mit weicher Röntgenstrahlung lassen sich Prozesse an Oberflächen und Grenzflächen von Dünnschichtmaterialien untersuchen und chemische Bindungen analysieren. Auch feinste magnetische Strukturen innerhalb von dünnen Schichten werden sichtbar. Schwerpunkte der Forschung an BESSY II sind Energiematerialien, von Solarzellen der nächsten Generation über katalytische Systeme bis hin zu magnetischen Materialien für neue, energieeffiziente Informationstechnologien.

„Das HZB engagiert sich mit voller Überzeugung in LEAPS. Indem wir bei der Weiterentwicklung von beschleunigerbasierten Lichtquellen eng zusammenarbeiten, schaffen wir in Europa beste Bedingungen für die Forschung mit Licht“, sagt Rech. Auch die Zukunftsprojekte am HZB zur Weiterentwicklung von BESSY II, BESSY VSR und BERLinPro, sind auf die europäische Forschungslandschaft abgestimmt.

Mehr Information: www.leaps-initiative.eu

red.

Das könnte Sie auch interessieren

  • HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Nachricht
    23.03.2023
    HZB erhält Fördermittel, um Innovationen rascher nutzbar zu machen
    Die Helmholtz-Gemeinschaft hat drei neue Innovationsplattformen ausgewählt, die nun gefördert werden. An zweien davon ist das HZB beteiligt: Die Innovationsplattform zu Beschleunigertechnologien HI-ACTS soll moderne Beschleuniger für vielfältige Anwendungen öffnen, während die Innovationsplattform Solar TAP neue Ideen aus den Laboren der Photovoltaikforschung rascher in die Anwendung bringen soll. Insgesamt erhält das HZB aus Mitteln des Pakts für Forschung und Innovation in den kommenden drei Jahren 4,2 Millionen Euro an Zuwendungen.

  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.