Solarzellen aus Kesteriten: Germanium statt Zinn verspricht bessere optoelektronische Eigenschaften

Die Einblendung zeigt den typischen Aufbau eines Kristalls mit  Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet.

Die Einblendung zeigt den typischen Aufbau eines Kristalls mit Kesteritstruktur, im Hintergrund sind die Kristallstruktur und die Elementarzelle angedeutet. © HZB

Durch gezielte Veränderungen der Zusammensetzung von Kesterit-Halbleitern lässt sich ihre Eignung als Absorbermaterial in Solarzellen verbessern. Wie ein Team am Helmholtz-Zentrum Berlin zeigte, gilt dies besonders für Kesterite, in denen Zinn durch Germanium ersetzt wurde. Die Wissenschaftlerinnen und Wissenschaftler untersuchten die Proben mit Hilfe von Neutronenbeugung am BER II und weiteren Methoden. Die Arbeit wurde für das Titelblatt der Zeitschrift CrystEngComm ausgewählt.

Kesterite sind Halbleiterverbindungen aus den Elementen Kupfer, Zinn, Zink und Selen. Diese Halbleiter lassen sich als Absorbermaterial in Solarzellen nutzen, schaffen aber bisher nur Wirkungsgrade von maximal 12,6 Prozent, während Solarzellen aus Kupfer-Indium-Gallium-Selenid (CIGS) bereits über 20 Prozent erreichen. Dennoch gelten Kesterite als interessante Alternative zu CIGS-Solarzellen, weil sie aus häufig vorkommenden Elementen bestehen, so dass keine Engpässe zu erwarten sind. Ein Team um Professor Dr. Susan Schorr am HZB hat nun eine Reihe von „nicht-stöchiometrischen“ Kesterit-Proben untersucht und den Zusammenhang zwischen Zusammensetzung und optoelektronischen Eigenschaften beleuchtet. Bei der Synthese der Proben am HZB wurden die Zinn-Atome durch Germanium ersetzt.

Mit Neutronen Elemente klar unterscheiden

Diese Proben untersuchten die Forscher mit Neutronenbeugung am BER II. Denn mit dieser Methode lassen sich die Elemente Kupfer, Zink und Germanium besonders gut voneinander unterscheiden und ihre Positionen im Kristallgitter verorten. Die Diagnose: Kesterite mit einer leicht Kupfer-armen und Zink-reichen Zusammensetzung, wie sie auch in Solarzellen mit den höchsten Wirkungsgraden zu finden ist, weisen die geringste Konzentration an Punktdefekten sowie die niedrigste Kupfer-Zink-Unordnung auf. Je Kupfer-reicher die Zusammensetzung wird, desto mehr steigt die Konzentration von anderen Punktdefekten, die als eher abträglich für die Leistungsfähigkeit von Solarzellen gelten. Weitere Untersuchungen zeigten, wie die so genannte Energiebandlücke von der Zusammensetzung der Kesterit-Pulverproben abhängt.  

Germanium wirkt

 „Diese Bandlücke ist eine Eigenschaft der Halbleiter und bestimmt, welche Lichtfrequenzen im Material Ladungsträger freisetzen“, erklärt René Gunder, Erstautor der Arbeit.  „Wir wissen nun, dass Germanium die optische Bandlücke vergrößert und damit dem Material ermöglicht, einen größeren Anteil des Sonnenlichts in elektrische Energie umzuwandeln.“

Kesterite: Kandidaten für Solarzellen und Photokatalysatoren

„Wir sind davon überzeugt, dass solche Kesterite sich nicht nur für Solarzellen eignen, sondern auch für andere Anwendungen in Frage kommen: So könnten Kesterite als Photokatalysatoren mit Hilfe von Sonnenlicht Wasser in Wasserstoff und Sauerstoff aufspalten und Solarenergie in Form von chemischer Energie speichern“, führt Susan Schorr aus.  

 

Die Arbeit wurde in CrystEngComm (2018) publiziert: “Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: From cation distribution to intrinsic point defect density”; R. Gunder, J. A. Márquez-Prieto, G. Gurieva, T. Unold and S. Schorr

DOI: 10. 1039/c7ce02090b

Weitere Neuigkeiten aus der Kesterit-Forschung

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.