BESSY II sheds light on how the internal compass is constructed in magnetotactic bacteria

The magnetosomes form a chain inside the bacteria's cell shows the electron cryotomography (ECT).

The magnetosomes form a chain inside the bacteria's cell shows the electron cryotomography (ECT). © 10.1039/C7NR08493E

Experiments at BESSY II revealed how an external magnetic field changes the orientiations of chain parts.

Experiments at BESSY II revealed how an external magnetic field changes the orientiations of chain parts. © 10.1039/C7NR08493E

Bacteria exist in many shapes and with very different talents. Magnetotactic bacteria can even sense the earth’s magnetic field by making use of magnetic nanoparticles in their interior that act as an internal compass. Spanish teams and experts at Helmholtz-Zentrum Berlin have now examined the magnetic compass of Magnetospirillum gryphiswaldense at BESSY II. Their results may be helpful in designing actuation devices for nanorobots and nanosensors for biomedical applications.

Magnetotactic bacteria are usually found in freshwater and marine sediments. One species, Magnetospirillum gryphiswaldense, is easily cultivated in the lab – with or without magnetic nanoparticles in their interior depending on the presence or absence of iron in the local environment. “So these microorganisms are ideal test cases for understanding how their internal compass is constructed”, explains Lourdes Marcano, a PhD student in physics at Universidad del Pais Vasco in Leioa, Spain.

Chain of magnetic nanoparticles form compass

Magnetospirillum cells contain a number of small particles of magnetite (Fe3O4), each approx. 45 nanometers wide. These nanoparticles, called magnetosomes, are usually arranged as a chain inside the bacteria. This chain acts as a permanent dipole magnet and is able to passively reorient the whole bacteria along the Earth’s magnetic field lines. “The bacteria exist preferentially at the oxy/anoxy transition zones”, Marcano points out, “and the internal compass might help them to find the best level in the stratified water column for satisfying their nutritional requirements.” The Spanish scientists examined the shape of the magnetosomes and their arrangement inside the cells using various experimental methods such as electron cryotomography.

Isolated chains examined at BESSY II

Samples of isolated magnetosome chains were analysed at BESSY II to investigate the relative orientation between the chain’s direction and the magnetic field generated by the magnetosomes. “Current methods employed to characterise the magnetic properties of these bacteria require sampling over hundreds of non-aligned magnetosome chains. Using photoelectron emission microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD) at HZB, we are able to “see” and characterise the magnetic properties of individual chains”, explains Dr. Sergio Valencia, HZB. “Being able to visualise the magnetic properties of individual magnetosome chains opens up the possibility of comparing the results with theoretical predictions.”

Helical shape

Indeed, the experiments revealed that the magnetic field orientation of the magnetosomes is not directed along the chain direction, as assumed up to now, but is slightly tilted. As the theoretical modelling of the Spanish group suggests, this tilt might explain why magnetosome chains are not straight but helical in shape.

Outlook: Nature as a model

A deeper understanding of the mechanisms determining the chain shape is very important, the scientists point out. Nature’s inventions could inspire new biomedical solutions such as nanorobots propelled by flagella systems in the direction provided by their magnetosome chain.

 

Publication in Nanoscale (2018): “Configuration of the magnetosome chain: a natural magnetic nanoarchitecture”; I. Orue, L. Marcano, P. Bender, A. Garcıa-Prieto, S. Valencia, M.A. Mawass, D. Gil-Carton, D. Alba Venero, D. Honecker, A. Garcıa-Arribas, L. Fernandez Barquın, A. Muela, M.L. Fdez-Gubieda

DOI: 10.1039/C7NR08493E

 

 

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.