Keywords: cooperations (143) BESSY II (269) spintronics (93) life sciences (60)

Science Highlight    16.04.2018

BESSY II sheds light on how the internal compass is constructed in magnetotactic bacteria

The magnetosomes form a chain inside the bacteria's cell shows the electron cryotomography (ECT).
Copyright: 10.1039/C7NR08493E

Experiments at BESSY II revealed how an external magnetic field changes the orientiations of chain parts.
Copyright: 10.1039/C7NR08493E

Bacteria exist in many shapes and with very different talents. Magnetotactic bacteria can even sense the earth’s magnetic field by making use of magnetic nanoparticles in their interior that act as an internal compass. Spanish teams and experts at Helmholtz-Zentrum Berlin have now examined the magnetic compass of Magnetospirillum gryphiswaldense at BESSY II. Their results may be helpful in designing actuation devices for nanorobots and nanosensors for biomedical applications.

Magnetotactic bacteria are usually found in freshwater and marine sediments. One species, Magnetospirillum gryphiswaldense, is easily cultivated in the lab – with or without magnetic nanoparticles in their interior depending on the presence or absence of iron in the local environment. “So these microorganisms are ideal test cases for understanding how their internal compass is constructed”, explains Lourdes Marcano, a PhD student in physics at Universidad del Pais Vasco in Leioa, Spain.

Chain of magnetic nanoparticles form compass

Magnetospirillum cells contain a number of small particles of magnetite (Fe3O4), each approx. 45 nanometers wide. These nanoparticles, called magnetosomes, are usually arranged as a chain inside the bacteria. This chain acts as a permanent dipole magnet and is able to passively reorient the whole bacteria along the Earth’s magnetic field lines. “The bacteria exist preferentially at the oxy/anoxy transition zones”, Marcano points out, “and the internal compass might help them to find the best level in the stratified water column for satisfying their nutritional requirements.” The Spanish scientists examined the shape of the magnetosomes and their arrangement inside the cells using various experimental methods such as electron cryotomography.

Isolated chains examined at BESSY II

Samples of isolated magnetosome chains were analysed at BESSY II to investigate the relative orientation between the chain’s direction and the magnetic field generated by the magnetosomes. “Current methods employed to characterise the magnetic properties of these bacteria require sampling over hundreds of non-aligned magnetosome chains. Using photoelectron emission microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD) at HZB, we are able to “see” and characterise the magnetic properties of individual chains”, explains Dr. Sergio Valencia, HZB. “Being able to visualise the magnetic properties of individual magnetosome chains opens up the possibility of comparing the results with theoretical predictions.”

Helical shape

Indeed, the experiments revealed that the magnetic field orientation of the magnetosomes is not directed along the chain direction, as assumed up to now, but is slightly tilted. As the theoretical modelling of the Spanish group suggests, this tilt might explain why magnetosome chains are not straight but helical in shape.

Outlook: Nature as a model

A deeper understanding of the mechanisms determining the chain shape is very important, the scientists point out. Nature’s inventions could inspire new biomedical solutions such as nanorobots propelled by flagella systems in the direction provided by their magnetosome chain.

 

Publication in Nanoscale (2018): “Configuration of the magnetosome chain: a natural magnetic nanoarchitecture”; I. Orue, L. Marcano, P. Bender, A. Garcıa-Prieto, S. Valencia, M.A. Mawass, D. Gil-Carton, D. Alba Venero, D. Honecker, A. Garcıa-Arribas, L. Fernandez Barquın, A. Muela, M.L. Fdez-Gubieda

DOI: 10.1039/C7NR08493E

 

 

arö


           



You might also be interested in
  • NEWS      05.06.2019

    Photovoltaics are growing faster than expected in the global energy system

    Dramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May. [...]


  • <p>The illustration is alluding to the laser experiment in the background and shows the structure of TGCN.</p>SCIENCE HIGHLIGHT      05.06.2019

    Organic electronics: a new semiconductor in the carbon-nitride family

    Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family. Triazine-based graphitic carbon nitride (TGCN) is a semiconductor that should be highly suitable for applications in optoelectronics. Its structure is two-dimensional and reminiscent of graphene. Unlike graphene, however, the conductivity in the direction perpendicular to its 2D planes is 65 times higher than along the planes themselves. [...]


  • NEWS      04.06.2019

    Federal Ministry of Education and Research supports the development of a miniaturised EPR spectrometer

    Several research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin. [...]




Newsletter