Keywords: research reactor (88) materials research (60) user research (29) spintronics (90) life sciences (59) HZB own research (86)

Science Highlight    05.06.2018

Neutron tomography: Insights into the interior of teeth, root balls, batteries, and fuel cells

Fossils like this 250 million year old skull of a lystrosaurus can be examined very carefully by neutron tomography.
Copyright: MfN Berlin

Neutron tomography shows how torsion (images left) and tensile forces (image right) are changing the distribution of different crystalline phases.
Copyright: HZB/Wiley VCH

Sequential tomography of a lupin root (yellowish green) after deuterated water (D2O) was introduced from below. The rising water front (H2O, dark blue) is displaced by the D2O from below over the course of time.  ©Christian Tötzke/ University of Potsdam

A team of researchers at Helmholtz-Zentrum Berlin (HZB) and European Spallation Source (ESS) has now published a comprehensive overview of neutron-based imaging processes in the renowned journal Materials Today (impact factor 21.6). The authors report on the latest developments in neutron tomography, illustrating the possible applications using examples of this non-destructive method. Neutron tomography has facilitated breakthroughs in so diverse areas such as art history, battery research, dentistry, energy materials, industrial research, magnetism, palaeobiology and plant physiology.

Neutrons can penetrate deep into a sample without destroying it. In addition, neutrons can also distinguish between light elements such as hydrogen, lithium and substances containing hydrogen. Because neutrons themselves have a magnetic moment, they react to the smallest magnetic characteristics inside the material. This makes them a versatile and powerful tool for materials research. 2D or 3D images, called neutron tomographs, can be calculated from the absorption of the neutrons in the sample. A world-renowned team headed by Dr. Nikolay Kardjilov and Dr. Ingo Manke is working with BER II, the neutron source at HZB, to constantly expand and improve of neutron tomography methods.

In their review paper, the authors describe the latest improvements in neutron imaging and present outstanding applications. Improvements in recent years have extended the spatial resolution down into the micrometer range. This is more than ten times better than with typical medical x-ray tomography. Faster images are also possible now, which makes observing processes in materials feasible, such as the “in operando” measurements of a fuel cell during its actual operation that shows precisely how the water is distributed in it. This provides important information for optimising the design of the cell.

Applications range from observing the transport of lithium ions in batteries and strength analyses of industrial components, to examinations of teeth, bones, and the roots of plants, to non-destructive analyses of historical objects such as old swords and knights' armour in order to obtain information on historical manufacturing methods.

“Neutron tomography is extremely versatile. We are working on further improvements and hope that this method, which is in great demand, will also be available in modern spallation sources in the future”, says Nikolay Kardjilov.


Publication: Materials Today 2018; “Advances in neutron imaging”, Nikolay Kardjilov, Ingo Manke, Robin Woracek, André Hilger, John Banhart

DOI: 10.1016/j.mattod.2018.03.001



You might also be interested in
  • <p class="MsoPlainText">The atmosphere can be compared to a bathtub that can only be filled to its rim if global warming is to be limited to a certain level. We could create another small outward flow with negative emissions. However, there is no way around turning off the tap.</p>NEWS      16.01.2019

    Climate change: How could artificial photosynthesis contribute to limiting global warming?

    If CO2 emissions do not fall fast enough, then CO2 will have to be removed from the atmosphere in the future to limit global warming. Not only could planting new forests and biomass contribute to this, but new technologies for artificial photosynthesis as well. An HZB physicist and a researcher at the University of Heidelberg have estimated how much surface area such solutions would require. Although artificial photosynthesis could bind CO2 more efficiently than the natural model, there are still no large modules that are stable over the long term. The team published their calculations in "Earth System Dynamics".


  • <p>(a) Neutronen-Eigenspannungsmessung an einer Schwei&szlig;probe aus handels&uuml;blichen Stahl, (b) Magnetfeldmessung, (c) Schwei&szlig;nahtquerschliff.</p>SCIENCE HIGHLIGHT      21.12.2018

    Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

    Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern. [...]

  • <p>Lena Gra&szlig; has received an award by GBM for her master thesis.</p>NEWS      20.12.2018

    Outstanding master thesis on the structure and function of a bacterial enzyme honoured

    On December 17, 2018, Lena Graß, a PhD student from the Structural Biochemistry Group at Freie Universität Berlin, was awarded the Master Prize of the Gesellschaft für Biochemie und Molekularbiologie e.V. (Society for Biochemistry and Molecular Biology) (GBM). For her master thesis at Freie Universität Berlin and the MX beamlines of BESSY II, she deciphered the structure and function of a so-called RNA helicase. [...]