Neutron tomography: Insights into the interior of teeth, root balls, batteries, and fuel cells

Fossils like this 250 million year old skull of a lystrosaurus can be examined very carefully by neutron tomography.

Fossils like this 250 million year old skull of a lystrosaurus can be examined very carefully by neutron tomography. © MfN Berlin

Neutron tomography shows how torsion  (images left) and tensile forces (image right) are changing the distribution of different crystalline phases.

Neutron tomography shows how torsion (images left) and tensile forces (image right) are changing the distribution of different crystalline phases. © HZB/Wiley VCH

Sequential tomography of a lupin root (yellowish green) after deuterated water (D<sub>2</sub>O) was introduced from below. The rising water front (H<sub>2</sub>O, dark blue) is displaced by the D<sub>2</sub>O from below over the course of time.&nbsp; &copy;Christian T&ouml;tzke/ University of Potsdam

Sequential tomography of a lupin root (yellowish green) after deuterated water (D2O) was introduced from below. The rising water front (H2O, dark blue) is displaced by the D2O from below over the course of time.  ©Christian Tötzke/ University of Potsdam

A team of researchers at Helmholtz-Zentrum Berlin (HZB) and European Spallation Source (ESS) has now published a comprehensive overview of neutron-based imaging processes in the renowned journal Materials Today (impact factor 21.6). The authors report on the latest developments in neutron tomography, illustrating the possible applications using examples of this non-destructive method. Neutron tomography has facilitated breakthroughs in so diverse areas such as art history, battery research, dentistry, energy materials, industrial research, magnetism, palaeobiology and plant physiology.

Neutrons can penetrate deep into a sample without destroying it. In addition, neutrons can also distinguish between light elements such as hydrogen, lithium and substances containing hydrogen. Because neutrons themselves have a magnetic moment, they react to the smallest magnetic characteristics inside the material. This makes them a versatile and powerful tool for materials research. 2D or 3D images, called neutron tomographs, can be calculated from the absorption of the neutrons in the sample. A world-renowned team headed by Dr. Nikolay Kardjilov and Dr. Ingo Manke is working with BER II, the neutron source at HZB, to constantly expand and improve of neutron tomography methods.

In their review paper, the authors describe the latest improvements in neutron imaging and present outstanding applications. Improvements in recent years have extended the spatial resolution down into the micrometer range. This is more than ten times better than with typical medical x-ray tomography. Faster images are also possible now, which makes observing processes in materials feasible, such as the “in operando” measurements of a fuel cell during its actual operation that shows precisely how the water is distributed in it. This provides important information for optimising the design of the cell.

Applications range from observing the transport of lithium ions in batteries and strength analyses of industrial components, to examinations of teeth, bones, and the roots of plants, to non-destructive analyses of historical objects such as old swords and knights' armour in order to obtain information on historical manufacturing methods.

“Neutron tomography is extremely versatile. We are working on further improvements and hope that this method, which is in great demand, will also be available in modern spallation sources in the future”, says Nikolay Kardjilov.

 

Publication: Materials Today 2018; “Advances in neutron imaging”, Nikolay Kardjilov, Ingo Manke, Robin Woracek, André Hilger, John Banhart

DOI: 10.1016/j.mattod.2018.03.001

arö

  • Copy link

You might also be interested in

  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.