GRECO kick-off in Madrid: advancing photovoltaics through “open science”

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.

The kick-off meeting took place in Madrid end of June 2018. The Institute for Solar Energy at the Universidad Politécnica de Madrid (UPM) is coordinating the research project that will see industry organisations, companies, government, academia and scientific organisations working together.

HZB contributions: materials data base and videotutorials

Dr. Eva Unger and her Helmholtz Young Investigator Group at the HZB are participants in GRECO: “We are contributing our expertise in the field of perovskite absorber layers for tandem photovoltaics and intend to establish a materials database in which key parameters and data from various absorbers can be brought together and made available in an open manner”, explains the chemist. She is also planning a video tutorial on the measurement and characterisation of solar cells. “Characteristic current-voltage curves are often not informative enough for determining the efficiency of perovskite solar cells”, explains the PV expert. The video is intended to contribute to establishing uniform quality standards for measuring solar cells worldwide.

Transparency and innovative products

Through use of Open Science Tools such as Open Access, Open Data, Open Education, Open Notebooks, Open Software, and Open Peer Review, GRECO wants to create complete transparency and exchange in the conduct of research. “This will enable new scientific concepts to be quickly applied by third parties, accelerating progress”, commented coordinators Dr. Ana B. Cristóbal and Prof. Carlos del Cañizo of the Universidad Politécnica de Madrid.

Innovative products to be developed by GRECO include repair and recycling methods for solar modules, precise modelling of power yields over timescales of decades (ageing), solar-powered irrigation systems, innovative solar modules as well as PV heat pump systems for use in various areas of everyday life.

 

Scientific Partners: Universidad Politécnica de Madrid, Pompeu Fabra University, Universidad de Évora, Central Solar Energy Laboratory of the Bulgarian Academy of Sciences, Helmholtz-Zentrum Berlin, Reiner Lemoine Institute, and Universidade de São Paulo

Industrial partners: Insolight SA (Switzerland) and the Euro-Mediterrean Irrigators Association (Spain)

In addition, the project is receiving support from the region of Andalusia, Spain.

GRECO stands for Fostering a Next GeneRation of European Photovoltaic SoCiety through Open Science

arö

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.