GRECO kick-off in Madrid: advancing photovoltaics through “open science”

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.

The kick-off meeting took place in Madrid end of June 2018. The Institute for Solar Energy at the Universidad Politécnica de Madrid (UPM) is coordinating the research project that will see industry organisations, companies, government, academia and scientific organisations working together.

HZB contributions: materials data base and videotutorials

Dr. Eva Unger and her Helmholtz Young Investigator Group at the HZB are participants in GRECO: “We are contributing our expertise in the field of perovskite absorber layers for tandem photovoltaics and intend to establish a materials database in which key parameters and data from various absorbers can be brought together and made available in an open manner”, explains the chemist. She is also planning a video tutorial on the measurement and characterisation of solar cells. “Characteristic current-voltage curves are often not informative enough for determining the efficiency of perovskite solar cells”, explains the PV expert. The video is intended to contribute to establishing uniform quality standards for measuring solar cells worldwide.

Transparency and innovative products

Through use of Open Science Tools such as Open Access, Open Data, Open Education, Open Notebooks, Open Software, and Open Peer Review, GRECO wants to create complete transparency and exchange in the conduct of research. “This will enable new scientific concepts to be quickly applied by third parties, accelerating progress”, commented coordinators Dr. Ana B. Cristóbal and Prof. Carlos del Cañizo of the Universidad Politécnica de Madrid.

Innovative products to be developed by GRECO include repair and recycling methods for solar modules, precise modelling of power yields over timescales of decades (ageing), solar-powered irrigation systems, innovative solar modules as well as PV heat pump systems for use in various areas of everyday life.

 

Scientific Partners: Universidad Politécnica de Madrid, Pompeu Fabra University, Universidad de Évora, Central Solar Energy Laboratory of the Bulgarian Academy of Sciences, Helmholtz-Zentrum Berlin, Reiner Lemoine Institute, and Universidade de São Paulo

Industrial partners: Insolight SA (Switzerland) and the Euro-Mediterrean Irrigators Association (Spain)

In addition, the project is receiving support from the region of Andalusia, Spain.

GRECO stands for Fostering a Next GeneRation of European Photovoltaic SoCiety through Open Science

arö


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.