Neutronen verraten Wasserstoff in Eiweißen

Mit immer aufwendigeren Methoden wollen Forscher die feinsten Strukturen auch der lebenden Materie erkunden. So nutzen sie Synchrotronstrahlung und Neutronen, um die atomare Architektur von Proteinen zu enträtseln. Proteine (Eiweiße) sind organische Riesenmoleküle, die aus kompliziert gebauten und phantasievoll gefalteten Ketten Tausender Atome bestehen. Von der Aufklärung ihrer Strukturen auf atomarer Ebene versprechen sich die Wissenschaftler ein tieferes Verständnis der Funktion der an nahezu allen Lebensvorgängen beteiligten Proteine.

Damit will die biologische Strukturforschung auch Beiträge zur Entwicklung neuer organischer Werkstoffe, wirksamer Medikamente und zur Therapie von heute noch unheilbaren Krankheiten leisten.

Um sogar die Aufenthaltsorte einzelner Wasserstoffatome in den Proteinen bestimmen zu können, müssen Biologen, Chemiker und Physiker Bruchteile eines Millionstel Millimeters messen können. Eine besondere Methode dafür ist die sogenannte Protein-Kristallographie mit Neutronen. Dieser Technik widmet das Berliner Hahn-Meitner-Institut (HMI) in Kooperation mit dem Berliner Zentrum für Neutronenstreuung (BENSC) und dem Max-Delbrück-Zentrum für Molekularmedizin (MDC) am 25. und 26. Februar in Berlin einen Workshop. An dem Treffen sind Experten aus Frankreich, England, Deutschland, Japan und den USA beteiligt. Sie wollen neue Ergebnisse vorstellen und technische Fragen diskutieren.

Wegen des großen Aufwands wird die Protein-Kristallographie mit Neutronen bislang nur in Tokai-Mura (Japan), Grenoble (Frankreich), Los Alamos (USA), Didcot (England) und in Deutschland am Berliner Hahn-Meitner-Institut (HMI) genutzt. Große Hoffnung setzen die Wissenschaftler dabei in neuartige Neutronenlieferanten wie der geplanten Europäischen Spallationsquelle ESS. An ihrer Konzeption sind auch Forscher aus dem HMI beteiligt. In Berlin steht ihnen und Gastwissenschaftlern derzeit mit dem Forschungsreaktor BER II eine leistungsfähige konventionelle Neutronenquelle zur Verfügung.

Neutronen können viele Stoffe gut durchdringen. Als elektrisch neutrale atomare Teilchen werden sie dabei nur leicht gestreut. Bei kristallinem Material führt die Streuung zu charakteristischen Intensitätsmustern, die von Detektoren registriert werden. Nach Auswertung der Daten können die Forscher daraus die genaue Anordnung der Atome im Kristall ermitteln. In einer biologischen Substanz sind Neutronen gegenüber Wasserstoff besonders empfindlich. Für die Untersuchung dieser Substanzen ist daher die Neutronen-Methode besonders geeignet. Zudem werden die kostbaren Proben im Vergleich zur Untersuchung mit energiereicher Synchrotonstrahlung besser geschont. Wie für jede kristallographische Methode müssen die Eiweiße allerdings auch bei der Neutronen-Methode vor der Analyse nach speziellen Verfahren in ihre kristalline Form verwandelt werden.

25. und 26. Februar 2000,
Humboldt-Universität, Institut für Biologie,
Chausseestr. 117
10115 Berlin

  • Link kopieren

Das könnte Sie auch interessieren

  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Nachricht
    07.07.2025
    Neue Abteilung am HZB: „KI und Biomolekulare Strukturen“
    Dr. Andrea Thorn baut seit 1. Juli 2025 am HZB die neue Abteilung „KI und Biomolekulare Strukturen“ auf. Die Biophysikerin bringt langjährige Expertise in KI-basierten Tools für die Strukturbiologie mit und freut sich auf die enge Zusammenarbeit mit dem Team für Makromolekulare Kristallographie an den MX-Beamlines von BESSY II.