Wasser in laufender Brennstoffzelle sichtbar gemacht

Tomogramm einer mit Neutronen durchleuchteten Brennstoffzelle.

Tomogramm einer mit Neutronen durchleuchteten Brennstoffzelle.

Wissenschaftlern des Berliner Hahn-Meitner-Instituts (HMI) und des Zentrums für Sonnenenergie- und Wasserstoff-Forschung (ZSW) in Ulm gelingt ein einzigartiger Blick in Brennstoffzellen. Obwohl eine Brennstoffzelle aus vielen Schichten undurchsichtiger Materialien besteht und von einem dichten Metallgehäuse umgeben ist, können die Forscher mit ihren neu entwickelten Methoden unmittelbar verfolgen, wie Wasser im Inneren der Brennstoffzelle entsteht und abfließt. Die Bilder helfen, das „Wassermanagement“ von Brennstoffzellen zu verstehen und dadurch die Zellen zu optimieren.

Zwei Verfahren ermöglichen den Forschern die Einblicke: Mit Synchrotronradiographie sehen sie Tausendstel Millimeter große Details. Mit dieser Methode konnten Ingo Manke (HMI) und Christoph Hartnig (ZSW) als erste beobachten, wie einzelne Wassertröpfchen in einer Brennstoffzelle entstehen. Die Neutronentomographie macht es möglich, die Wasserverteilung in einer kompletten Brennstoffzelle dreidimensional darzustellen. Die Ergebnisse wurden in zwei Artikeln in der Zeitschrift Applied Physics Letters vorgestellt. Das Bundesministerium für Bildung und Forschung (BMBF) hat kürzlich bekannt gegeben, das Projekt, das von HMI und ZSW zusammen mit vier weiteren Partnern weiterbetrieben wird, mit 2 Millionen Euro zu fördern.

Brennstoffzellen erzeugen elektrischen Strom in einer „kontrollierten Knallgasreaktion“ – Wasserstoff und Sauerstoff vereinigen sich zu Wasser, die Energie wird aber nicht als Knall, sondern als nutzbare Elektrizität frei. Damit die Zelle möglichst optimal arbeitet, muss sie im Inneren genau die richtige Menge Wasser enthalten – zu viel Wasser verstopft die Kanäle, durch die Wasserstoff und Sauerstoff fließen; zu wenig Wasser lässt die Zelle austrocknen. Beides schadet der Brennstoffzelle: die Leistung wird niedriger und die Zelle versagt leichter. Bisher waren Entwickler von Brennstoffzellen, die den Wassertransport verfolgen wollten, auf theoretische Rechnungen oder Experimente an Zellen mit transparenten Bauteilen angewiesen. Die Vorgänge in einer Brennstoffzelle sind aber so komplex, dass man damit nur unvollständige Informationen bekommt.

In ihrer Arbeit profitierten die Forscher von den besonderen Eigenschaften von Synchrotronstrahlung und Neutronen – Strahlen, die weltweit nur an wenigen Orten erzeugt werden. Synchrotronstrahlen ähneln gewöhnlicher Röntgenstrahlung, sind aber viel intensiver und ihre Eigenschaften können genau an die Bedingungen des Experiments angepasst werden. Mit ihrer Hilfe kann man detailreiche Durchleuchtungsbilder auch von massiven Objekten erhalten. Erzeugt werden die Synchrotronstrahlen an der Berliner Synchrotronstrahlungsquelle BESSY in Berlin-Adlershof. Hier bewegen sich Elektronen mit beinahe Lichtgeschwindigkeit auf einer Kreisbahn von 280 Metern Durchmesser und geben dabei Strahlung ab, die sich – ähnlich wie die Funken an einem Schleifrad – tangential vom Speicherring wegbewegt.

Bei den Neutronenexperimenten nutzen die Forscher aus, dass Metalle für Neutronen praktisch durchsichtig sind; wasserstoffhaltige Substanzen schwächen den Neutronenstrahl jedoch stark ab – Wasser wird damit hinter dem Metall deutlich sichtbar. Um ein dreidimensionales Bild des Wassers zu erzeugen, mussten die Forscher die Brennstoffzelle aus mehreren hundert Richtungen mit Neutronen beschießen, so dass ein Computerprogramm aus den zweidimensionalen Bildern die dreidimensionale Wasserverteilung berechnen konnte. Um das möglich zu machen, haben Ingo Manke und Christoph Hartnig ein Verfahren entwickelt, mit dem man die Wasserverteilung in der Zelle für mehrere Stunden unverändert halten kann. Die Neutronenexperimente wurden am Forschungsreaktor des Hahn-Meitner-Instituts in Berlin-Wannsee durchgeführt.

Seit mehreren Jahren untersuchen Forscher von ZSW und HMI gemeinsam Brennstoffzellen mit Neutronen und Synchrotronstrahlung. Das ZSW bringt in dem Projekt seine langjährige Erfahrung auf dem Gebiet der Brennstoffzellenentwicklung ein. Die Untersuchungen werden an den Tomographieanlagen des Berliner Hahn-Meitner-Instituts durchgeführt, die in vielfältiger Weise an die Bedürfnisse der Brennstoffzellen-Versuche angepasst werden.

Veröffentlichungen:

I. Manke, Ch. Hartnig et al. Applied Physics Letters 90, 184101 (2007)

I. Manke, Ch. Hartnig et al. Applied Physics Letters 90, 174105 (2007)

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.