Der weltweit stärkste Magnet für Neutronenexperimente wird in Berlin errichtet

Modell des Hochfeldmagneten im Maßstab 1:5

Modell des Hochfeldmagneten im Maßstab 1:5

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Der Kooperationsvertrag zwischen dem Hahn-Meitner-Institut Berlin (HMI) und dem National High Magnetic Field Laboratory (NHMFL) Tallahassee (Florida State University) zum Bau eines neuen Hochfeldmagneten ist unterzeichnet worden. Er wird der weltweit stärkste Magnet für Neutronenstreuexperimente. Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung.

25 Tesla bis zirka 30 Tesla wird der neue Hochfeldmagnet erzeugen, der bis 2011 am HMI entsteht. Das ist etwa eine Million Mal so stark wie das Erdmagnetfeld. Das Tallahassee-Institut wird ihn für etwa 8,7 Millionen Dollar bauen, weitere 10 Millionen Euro kostet die notwendige Infrastruktur, zu der Anlagen für Kühlung und Stromzufuhr gehören. Das insgesamt 17,8 Millionen Euro umfassende Projekt wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung (BMBF) finanziert, den Rest trägt die Senatsverwaltung für Bildung, Wissenschaft und Forschung des Landes Berlin. Es sichert dem HMI seine internationale Spitzenposition, die es auf dem Gebiet der Neutronenforschung kombiniert mit starken Magnetfeldern und tiefen Temperaturen einnimmt.

„Schon jetzt kommen Wissenschaftler aus aller Welt zu uns, weil sie hier mithilfe von Neutronen Materie bei extremen äußeren Bedingungen untersuchen können. Mit dem neuen Magneten können sie Experimente durchführen, die nirgendwo sonst auf der Welt möglich sind“, sagte Professor Michael Steiner, der wissenschaftliche Geschäftsführer des HMI, am Donnerstag in Berlin. Thomas Rachel, Parlamentarischer Staatssekretär im BMBF, sagte auf der Pressekonferenz: „Mit diesem Großgerät wird das Hahn-Meitner-Institut selbst zu einem Magneten, der Forscher aus aller Welt nach Berlin zieht.“ 

Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung – der Fähigkeit einzelner Substanzen, Strom schon bei höheren Temperaturen ohne Widerstand zu leiten. 

Um den Magneten zu bauen, müssen die Ingenieure an die Grenze des Machbaren gehen. Sie verwenden im Inneren, wo die Kräfte am stärksten sind, eine Kupferspule. Die äußere, in Reihe geschaltete Spule, besteht aus supraleitendem Material, das mit flüssigem Helium gekühlt wird. Mit dieser so genannten Hybridbauweise können die extremen Felder unter möglichst sparsamem Energieeinsatz erzeugt werden. Außerdem musste eine speziell an den Hochfeldmagneten angepasste Neutroneninstrumentierung entwickelt werden.

Dieses Know-how ist im HMI vorhanden – ein wichtiger Grund, weshalb die Helmholtz-Gemeinschaft dieses Projekt fördert. Professor Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft, sagte in Berlin: „Das Hahn-Meitner-Institut verfügt über sehr viel Erfahrung beim Betrieb starker Magnete und bei der Entwicklung von Neutronenexperimenten. Auf Grund dieser einzigartigen Expertise wird das Helmholtz-Zentrum auch dieses ehrgeizige Projekt zum Erfolg führen.“


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.