Der weltweit stärkste Magnet für Neutronenexperimente wird in Berlin errichtet

Modell des Hochfeldmagneten im Maßstab 1:5

Modell des Hochfeldmagneten im Maßstab 1:5

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Blick in die Neutronenleiterhalle 2, den zukünftigen Standort des Hochfeldmagneten.

Der Kooperationsvertrag zwischen dem Hahn-Meitner-Institut Berlin (HMI) und dem National High Magnetic Field Laboratory (NHMFL) Tallahassee (Florida State University) zum Bau eines neuen Hochfeldmagneten ist unterzeichnet worden. Er wird der weltweit stärkste Magnet für Neutronenstreuexperimente. Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung.

25 Tesla bis zirka 30 Tesla wird der neue Hochfeldmagnet erzeugen, der bis 2011 am HMI entsteht. Das ist etwa eine Million Mal so stark wie das Erdmagnetfeld. Das Tallahassee-Institut wird ihn für etwa 8,7 Millionen Dollar bauen, weitere 10 Millionen Euro kostet die notwendige Infrastruktur, zu der Anlagen für Kühlung und Stromzufuhr gehören. Das insgesamt 17,8 Millionen Euro umfassende Projekt wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung (BMBF) finanziert, den Rest trägt die Senatsverwaltung für Bildung, Wissenschaft und Forschung des Landes Berlin. Es sichert dem HMI seine internationale Spitzenposition, die es auf dem Gebiet der Neutronenforschung kombiniert mit starken Magnetfeldern und tiefen Temperaturen einnimmt.

„Schon jetzt kommen Wissenschaftler aus aller Welt zu uns, weil sie hier mithilfe von Neutronen Materie bei extremen äußeren Bedingungen untersuchen können. Mit dem neuen Magneten können sie Experimente durchführen, die nirgendwo sonst auf der Welt möglich sind“, sagte Professor Michael Steiner, der wissenschaftliche Geschäftsführer des HMI, am Donnerstag in Berlin. Thomas Rachel, Parlamentarischer Staatssekretär im BMBF, sagte auf der Pressekonferenz: „Mit diesem Großgerät wird das Hahn-Meitner-Institut selbst zu einem Magneten, der Forscher aus aller Welt nach Berlin zieht.“ 

Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung – der Fähigkeit einzelner Substanzen, Strom schon bei höheren Temperaturen ohne Widerstand zu leiten. 

Um den Magneten zu bauen, müssen die Ingenieure an die Grenze des Machbaren gehen. Sie verwenden im Inneren, wo die Kräfte am stärksten sind, eine Kupferspule. Die äußere, in Reihe geschaltete Spule, besteht aus supraleitendem Material, das mit flüssigem Helium gekühlt wird. Mit dieser so genannten Hybridbauweise können die extremen Felder unter möglichst sparsamem Energieeinsatz erzeugt werden. Außerdem musste eine speziell an den Hochfeldmagneten angepasste Neutroneninstrumentierung entwickelt werden.

Dieses Know-how ist im HMI vorhanden – ein wichtiger Grund, weshalb die Helmholtz-Gemeinschaft dieses Projekt fördert. Professor Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft, sagte in Berlin: „Das Hahn-Meitner-Institut verfügt über sehr viel Erfahrung beim Betrieb starker Magnete und bei der Entwicklung von Neutronenexperimenten. Auf Grund dieser einzigartigen Expertise wird das Helmholtz-Zentrum auch dieses ehrgeizige Projekt zum Erfolg führen.“


Das könnte Sie auch interessieren

  • Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Science Highlight
    02.06.2023
    Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten
    Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.
  • Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah
    Science Highlight
    26.05.2023
    Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah
    Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am HZB und der Freien Universität Berlin.
  • Graphen auf Titancarbid erzeugt neuartigen Phasenübergang
    Science Highlight
    25.05.2023
    Graphen auf Titancarbid erzeugt neuartigen Phasenübergang
    An der Röntgenquelle BESSY II hat ein Team einen Lifshitz-Übergang in TiC entdeckt, der durch eine Beschichtung mit Graphen hervorgerufen wird. Die Ergebnisse zeigen das Potenzial von 2D-Materialien wie Graphen und die Auswirkungen, die sie durch Wechselwirkungen im Nahfeld auf benachbarte Materialien haben.