2.8 Mio Euro Funding for preparing perovskite solar cells for high volume manufacturing

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

View into the new HySPRINT laboratory at HZB, where perovskit solar cells can be produced and tested. Photo: HZB/M. Setzpfandt

HZB participates in a new consortium for Perovskite solar technology that is led by Oxford PV Germany GmbH. The consortium is funded by the German Ministry of Economics and Energy with 2.8 Million Euros and aims to further demonstrate the manufacturability of perovskite-silicon tandem solar cells.

Further partners are Von Ardenne GmbH, Fraunhofer-Institute for Solar Energy Systems ISE, and the Technical University of Berlin. The project will focus on preparing perovskite solar cell technology for high volume manufacturing. This will include the optimisation of the perovskite-silicon tandem solar cell architecture, to make further efficiency improvements on industrial 156 mm x 156 mm wafer formats; the refinement of industrial scale process technology; and life-cycle analysis to inform the social-environmental impact of the tandem solar cells.

"Perovskite-based tandem solar cells are very promising to achieve really high efficiencies. In order to contribute to this exciting development we have built up strong competences in perovskites and tandem cell technology such as the Helmholtz Innovation Lab HySPRINT", says Prof. Dr. Rutger Schlatmann, Director of the Competence Center Thin Film and Nanotechnology for Photovoltaics Berlin (PVcomB) at HZB. "To the consortium with Oxford PV, we contribute our vast expertise in high-efficiency silicon heterojunction bottom cells", adds Dr. Bernd Stannowski who is leading these activities at the PVcomB.

Dr. Chris Case, Chief Technology Officer at Oxford PV says “The consortium partners bring together the perfect balance of expertise. Refining the manufacturing process of our perovskite solar cell technology will ensure the highest performing tandem solar cell in the field and the easy transfer of our technology into silicon solar cell and module production lines.”

 In June 2018, HZB and Oxford achieved an independently certified efficiency of 25.2 % for their perovskite silicon tandem solar cell. “In our cooperation, we aim to further optimize perovskite silicon tandem cells, demonstrate their scalability and facilitate their integration into large-area solar modules”, says Rutger Schlatmann.

Further Information:

Press Release Oxford PV

(sz/Oxford PV)

  • Copy link

You might also be interested in

  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • The BIPV living lab at the centre of an international comparative study
    News
    14.01.2026
    The BIPV living lab at the centre of an international comparative study
    The BIPV living lab at HZB in Berlin-Adlershof is at the centre of an international comparative study for the simulation of coloured solar façades.
  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.