Hanwha Q-Cells Quantsol Awards 2018

Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold (from left) have been awarded with an HQCQ 2018.

Alejandra Villanueva Tovar, Pavlo Perkhun, Erin Looney, Tom Veeken, Gizem Birant, Harald Reinhold (from left) have been awarded with an HQCQ 2018. © HZB

Six young researchers received a Hanwha Q-Cells Quantsol Award for their self-developed Photovoltaics. This award is presented by the organizers of the international summer school Quantsol together with the industry.

The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) took place from 2 to 9 September 2018 in Hirschegg / Kleinwalsertal, Austria, for the eleventh time in a row. More than 50 prospective solar researchers from 20 countries attended the event. The participants received a comprehensive introduction into photovoltaics and solar fuel generation. Experts from leading research institutes all over the world presented the basic processes for converting solar energy into chemical and electrical energy and showed ways to their technical application. Newer materials, such as the promising perovskites or oxides for water splitting, as well as special analytical methods were also discussed in detail.

As last year, the Hanwha Q-Cells Quantsol Prize (QHQC Award 2018, see photo), was awarded in four categories. The winners in the team categories were Gizem Birant (University of Hasselt, Belgium) and Alejandra Villanueva Tovar (HZB) for the best self-built solar cell and Pavlo Perkhun (CINaM - Centre Interdisciplinaire de Nanoscience de Marseille, France) and Harald Reinhold (Carl von Ossietzky University of Oldenburg) for the best optical simulation of a perovskite silicon tandem solar cell. In the individual category, the prize went to the most active participant Erin Looney (MIT, USA) and Tom Veeken (AMOLF, Netherlands) for the best single crystal produced with the Epi-Simulator.

“We would like to thank all the helpers from the HZB and the TU Ilmenau as well as both research institutions, without whom it would not have been possible to organize and carry out such a high-quality school," said Prof. Klaus Lips, who – together with Prof. Thomas Hannappel, TU Ilmenau, is organizing this summerschool since eleven years. Due to the great demand, the next Quantsol Summer Schools are planned for September 2019 and 2020.

red.

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.