ERC-Synergy-Grant mit HZB-Beteiligung eingeworben

Der Informatiker Andreas Maier, die Materialforscherin Silke Christiansen und der Mediziner Georg Schett haben gemeinsam einen ERC Synergy Grant eingeworben.

Der Informatiker Andreas Maier, die Materialforscherin Silke Christiansen und der Mediziner Georg Schett haben gemeinsam einen ERC Synergy Grant eingeworben. © FAU

Neuartiges Röntgenmikroskop soll Mikrostrukturen in situ und in vivo abbilden

Ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern will ein neues bildgebendes Verfahren zur Untersuchung von Osteoporose und anderen Knochenerkrankungen für den Einsatz am lebenden Individuum entwickeln, um raschere Therapieerfolge zu ermöglichen. Prof. Dr. Silke Christiansen, Wissenschaftlerin am HZB und Physik-Professorin an der Freien Universität Berlin bringt ihre Expertise in der korrelativen Mikroskopie und Nanotechnologie ein. Das Projekt 4-D+ nanoSCOPE wurde nun vom Europäischen Forschungsrat (ERC) zur Förderung durch einen ERC-Synergy Grant ausgewählt und wird für 72 Monate mit bis zu 12,3 Mio. Euro gefördert werden.

Weltweit nimmt die Zahl älterer und hochbetagter Menschen zu, und damit auch die Anzahl von Patienten, die an Osteoporose leiden. Diese Krankheit beeinträchtigt die Lebensqualität erheblich und führt zu hohen gesellschaftlichen Kosten. Dennoch sind Entstehung und Ablauf von Osteoporose noch immer nicht ausreichend verstanden. Denn Methoden für eine tiefgehende Analyse der Knochenfeinstruktur im Zeitverlauf am lebenden Individuum stehen bisher nicht zur Verfügung, insbesondere solche, die auch große Matrixstudien mit statistischer Signifikanz erlauben. Dies will nun ein interdisziplinäres Forschungsprojekt ändern.

Die Professoren Georg Schett (Universitätsklinikum Erlangen), Andreas Maier (Friedrich-Alexander-Universität Erlangen Nürnberg) und Silke Christiansen (Helmholtz-Zentrum Berlin für Materialien und Energie, HZB sowie Freie Universität Berlin) wollen dafür erstmals Röntgenmikroskopie an Lebewesen ermöglichen. Sie planen die Entwicklung eines einzigartigen, schnell scannenden und niedrig dosierten Röntgenmikroskops, einem „4D+ nanoSCOPE“ für das sie in enger Zusammenarbeit mit der Firma Carl Zeiss Microscopy ein Gerät vom Typ XRM Versa 520 Hardware- und Software-seitig modifizieren werden. Hier werden insbesondere die Integration einer neuartigen Hochleistungsröntgenquelle und eines ultra-schnellen Auslesedetektors erfolgen wobei auch die Datenauswertung mit neusten Verfahren des maschinellen Lernens (Precision Learning) neu aufgestellt werden muss.

Das 4D-Nanoskop wird erstmalig erlauben die Mikro- und Nanostruktur von Knochen am lebenden Individuum in zeitlicher Entwicklung zu monitoren und damit den Prozess des Knochenumbaus zu verstehen. Damit wird es möglich, Auswirkungen von Alter, Hormonstatus, Entzündungsprozessen, Medikamenten oder anderen Therapieansätzen auf den Knochen zu beurteilen.

„Wir gratulieren Silke Christiansen und ihren Kollegen zu dieser sehr prestigeträchtigen und wirklich synergetischen Förderung. Das neue Mikroskop wird zunächst in der medizinischen Forschung eingesetzt, aber wir freuen uns darauf, seine einzigartigen Möglichkeiten auch in der Energieforschung zu nutzen", sagt Prof. Bernd Rech, wissenschaftlicher Direktor des HZB. Die Methode ermöglicht auch in situ-Studien von dynamischen Prozessen in natürlichen und synthetischen Materialien, beispielsweise die Beobachtung und das Verfolgen von Korrosionsprozessen und Mikrofrakturierung.

Das HZB besitzt große Expertise auf dem Gebiet der Röntgenuntersuchungen und der Elektronenmikroskopie und hat einen modernen Gerätepark (CoreLabs) aufgebaut, der vor allem zur Forschung an Dünnschichtsolarzellen, solaren Brennstoffen und anderen Energiematerialien genutzt wird. Die HZB CoreLabs sowie modernste Zeiss Labs@Location-Röntgenmikroskope ergänzen das Synchrotron BESSY II.

 

Projektname: 4-D+ nanoScope – Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.