Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang

</p> <p>Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.

Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle. © HZB

Oberhalb der Perowskit-Schicht sorgt eine strukturierte Polymer-Folie f&uuml;r besseren Lichteinfang.

Oberhalb der Perowskit-Schicht sorgt eine strukturierte Polymer-Folie für besseren Lichteinfang. © HZB

Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert.

Tandemsolarzellen aus Silizium und Metall-Halid Perowskit-Verbindungen können einen besonders großen Anteil des Sonnenspektrums in elektrische Energie umwandeln. Allerdings wird normalerweise ein Teil des Lichts reflektiert und geht damit für die Energieumwandlung verloren. Nanostrukturen können dafür sorgen, dass die Solarzelle mehr Licht „einfängt“. So werden zum Beispiel pyramidenförmige Strukturen in Silizium eingeätzt. Solche strukturierten und damit rauen Silizium-Schichten sind allerdings nicht mehr als Unterlage für die hauchdünnen Perowskit-Schichten geeignet. Denn Perowskite werden normalerweise aus einer Lösung zu einem hauchdünnen Film aufgeschleudert, der aber auf strukturierten Silizium-Schichten nicht wie gewünscht konform aufwachsen kann.

Wirkungsgrad von 23,4 % auf 25,5 % verbessert

Ein Team um den HZB-Physiker Dr. Steve Albrecht hat nun unterschiedliche Designs von Tandemzellen mit lichteinfangenden Strukturen untersucht. Am besten funktionierten Tandemzellen, deren Silizium-Schicht von unten strukturiert war. Die Perowskit-Schicht konnte damit auf die glatte Seite des Siliziums aufgeschleudert werden. Auf die Perowskit-Schicht brachten sie zusätzlich eine Polymer-Folie auf, die ebenfalls strukturiert war, eine so genannte Lichtmanagement-Folie (LM-Folie). „Auf diese Weise gelang es uns, den Wirkungsgrad einer monolithischen Perowskit-Silizium-Tandemzelle von 23,4 % auf 25,5 % deutlich zu verbessern“, sagt Dr.Marko Jošt, Erstautor der Studie und Postdoktorand im Team von Albrecht. Die Tandemzellen wurde komplett am HZB angefertigt, die Siliziumzelle stammt aus dem PVcomB und die Perowskitzelle aus dem HySPRINT-Labor.

Modellierung zeigt: bis zu 32,5 % könnten möglich sein

Darüber hinaus haben Jošt und Kollegen ein ausgefeiltes numerisches Modell für solche komplexen 3D-Schichtstrukturen und ihre Wechselwirkung mit Licht entwickelt. Damit konnten sie berechnen, wie sich unterschiedliche Zell-Designs mit Texturen an verschiedenen Schnittstellen auf den Wirkungsgrad auswirken. „Aufgrund der komplexen Simulationen und empirischen Daten  können wir abschätzen, dass sich sogar Wirkungsgrade von 32,5 Prozent erzielen lassen – sofern es uns gelingt, Perowskit mit einer Bandlücke von 1,66 eV einzubauen“, erklärt Jošt. 

Einsatz an Fassaden (BIPV)

Und Teamleiter Steve Albrecht erklärt: „Wir haben auf der Basis von echten Wetterdaten den Energieertrag im Jahresverlauf berechnen können, und zwar für die verschiedenen Zelldesigns und für drei verschiedene Standorte.“ Außerdem zeigen die Simulationen, dass die LM-Folie auf der Oberseite der Zelle sich vor allem bei diffuser Beleuchtung, also nicht nur bei senkrechtem Lichteinfall, lohnt. Damit könnten Tandemzellen mit eingebauten LM-Folien sich auch für den Einsatz an Fassaden eignen: Mit der so genannten bauwerksintegrierten Photovoltaik (BIPV) werden aktuell riesige neue Flächen für die Energiegewinnung erschlossen.

 

Publiziert in  Energy & Environmental Sciences (2018): “Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield”¸ Marko Jošt, Eike Köhnen, Anna Morales Vilches, Benjamin Lipovšek, Klaus Jäger, Bart Macco,  Amran Al-Ashouri, Janez Krc,  Lars Korte, Bernd Rech, Rutger Schlatmann, Marko Topic, Bernd Stannowski and Steve Albrecht

DOI: 10.1039/C8EE02469C

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.